srcl2/ 1. py

10.

© XN OEWNE

Towar d hi gher-order functions

Dan Arnendari z

danal | an@s. harvard. edu

create an arbitrary list of nunbers

nuns = [1, 5,

print

"Initial:",

10, 8, -4, 432]

nuns

now let's add 1 to each nunber

result

=11

for numin nums:
resul t. append(num + 1)

print

perhaps we now want to nultiply each by sone val ue

resul t

"Add 1:

=11

for numin nuns:
resul t. append(num* 2)

print

"Doubl e:

resul t

resul t

srcl2/ 2. py

10.

© XN OEWNE

Towar d hi gher-order functions

Dan Arnendari z
danal | an@s. harvard. edu

create an arbitrary list of nunbers
nuns = [1, 5 10, 8, -4, 432]

print "Initial:", nuns

def incrementor(num:
I ncrenent a nunber by 1 """
return num+ 1

iterate over every itemin the list,
result = []
for numin nuns:

resul t. append(i ncrenmentor (num)

print "Add 1. ", result

def doubl er (num:
Doubl e a nunber
return num?* 2

iterate over every itemin the list,
result = []
for numin nuns:

resul t. append(doubl er (nunj)

print "Double: ", result

applying our function to it

applying our function to it

srcl2/ 3. py

10.

© XN OEWNE

Towar d hi gher-order functions

Dan Arnendari z
danal | an@s. harvard. edu

create an arbitrary list of nunbers
nuns = [1, 5 10, 8, -4, 432]

print

"Initial:",

nuns

def apply_to_all(f, itemns):

""" Apply a function f to every itemin a list

result = []

for

return result

itemin itens:

new item= f(item
resul t. append(new_item

def incrementor(num:
Increnent a nunmber by 1 """

return num+ 1
def doubl er (num:

return num?* 2

print
print

Doubl e a nunber

"Add 1:
" Doubl e:

apply_to_all (incrementor, nuns)

apply_to_all (doubl er,

nuns)

srcl2/ 4. py

10.

© XN OEWNE

Using Python's built-in H gher-Order

Dan Arnendari z
danal | an@s. harvard. edu

create an arbitrary list of nunbers
nuns = [1, 5 10, 8, -4, 432]

print "Initial:", nuns

def incrementor(num:
Increnent a nunber by 1 """
return num+ 1

def doubl er(num:
“wv Doubl e a number """
return num?* 2

the "map’ function is a HOF that applies a function to an entire |ist

Functions (HOFs):

print "Add 1: ", nmap(increnentor, nuns)

print "Double: ", nmap(doubler, nuns)

map

srcl2/ 5. py

10.

© XN OEWNE

Using Python's built-in H gher-Order Functions (HOFs): reduce

Dan Arnendari z
danal | an@s. harvard. edu

create an arbitrary list of nunbers
nuns = [1, 5 10, 8, -4, 432]

print "Initial:", nuns

def add(x, y):
Sum two nunbers """
return x +y

def multiply(x, y):
return x * vy

the “reduce’ function is a HOF that collapses a list to a single value
print "Sumof all values: ", reduce(add, nuns, O0)
print "Multiply all values: ", reduce(multiply, nuns, 1)

Reduce operates in this way:

We want to sumall of the objects, so we provide our function “sum to reduce()
It then applies sumon the first element and the initial value, and the

output of that function is then used as input to the next iteration.

Let's say we have a list [1, 5, 8]
The first operation would be:

sum(0, 1) -- "0" is our initial value. The output is 1

1 is used as one of the next inputs; the other is the next itemin the |ist
sum(1l, 5) -- outputs "6"

sunm(6, 8) -- outputs our final value, 14!

Note: the order is not guaranteed!

srcl2/ mapreduce. py

© XN OEWNE

B ADADDADDDEOW®WNWWWWONRNNNRNNNRNNNERRRR R B BB
ONOOTEWONPEOO®O®NDAREWNEOOONDARE®NDREO®OONOGEWNERO

Use MapReduce (Hadoop) style programming to count the nost common letter
uni grans (single characters) and bigrans (character pairs) in a text.
See: http://en.w ki pedi a. org/wi ki/Bi gram

Hadoop assunes that the input data is a text file. This is convenient,
because text files can be easily broken into chunks at individual |ines
and distributed to many conputers. |t then roughly operates in this fashion:

MAP STEP: runs a devel oper-provided function on one line at a tine of the input
files. The Map step is therefore generally used to convert the data represented
inthe line into one or nore key/value pairs. Normally, we could think of
"key/val ue" pairs as a dictionary, but Hadoop |lets us have duplicate keys.

So, in essence, if we're witing code for Hadoop (which is normally done in the
Java progranm ng | anguage, but we're using Python for famliarity), we want

to wite a map function that will accept a line of text and output a dictionary.

SHUFFLE STEP: As key/value pairs cone in fromthe nmap step, hadoop sorts them
and redirects all values that have the sanme key to the sane conputer to run
the Reduce step. The map step nust finish conpletely before noving on to

t he Reduce step.

REDUCE STEP: Anot her devel oper-provi ded function, the reducer is given a
key and a list of all of the values for that key by Hadoop. It then
perfornms sone conputation and outputs a *single* value for that key.

SORT STEP: Hadoop will generally sort the final output data.

It is not unusual to have to run several Map/Reduce steps on a big data set
before receiving the output you want. In our exanple below, we'll only need a
singl e Map and single Reduce step to conplete our goal.

See nore information on MapReduce applications, of which Hadoop is a part, here:
http://en.w ki pedi a. org/ wi ki / MapReduce

For a good exercise, consider how you could nodify the code bel ow to count
uni gram WORDS and bi gram WORDS. | n other words, instead of counting individual
characters or character pairs, counting whole words and counting word pairs.

Dan Arnendariz, Dan Bradl ey
danal | an@s. harvard. edu, dbradl ey@s50. harvard. edu

itengetter will assist in sorting
fromoperator inport itengetter

def uni gram mapper (line):
"""Gven a line of text, renove extraneous characters and output a key/val ue

srcl2/ mapreduce. py

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.

pair for each character. The character will be the key and the value wll
be 1.
For exanple, given the string "Hello, world" we will output:

[(h", 1), (e 1), (1M1, (1M1, (ot 1), ("w,1), ("on, 1), (r7, 1),
("7 D, ("d, D]

output = []

performthe step for every character in the string
for char in line:
skip the character if it is not a letter
i f not char.isal pha():
conti nue

create our keyvalue pair, converting the letter to | ower case
keyval ue_pair = (char.lower(), 1)

out put . append(keyval ue_pair)

return output

def bi gram mapper(line):

"""Gven a line of text, renove extraneous characters and output a key/val ue

pair for each bigram The bigramw || be the key and the value will be 1.

For exanple, given the string "Hello, world" we wll output:

[("he", 1), ("el™, 1), ("II",1), ("lo",1), ("wo",1), ("or",1), ("rl", 1),
("1d", 1)]
output = []

iterate over each character in the line
for i in range(len(line)-1):

fetch a bigramby splicing the line at i to grab 2 neighboring chars

bigram = line[i:i+2]

skip the bigramif either character isn't a letter
i f not bigrami sal pha():
conti nue

create the key/value pair, and ensure the bigramis |ower case
keyval ue_pair = (bigramlower(), 1)

out put . append(keyval ue_pair)

return output

srcl2/ mapreduce. py

97. def count_reducer(key, values):

98. """Gven a list of values for a key, we'll return the sumof all values."""
99. total = 0

100. for value in values:

101. total += value

102. return (key, total)

103.

104.

105. def hadoop(file, napper, reducer):

106. """ A hi gher-order function that accepts a napper and a reducer and
107. perfornms Hadoop/ MapReduce-styl e processing on a given file.

108.

109. Essentially, this code (in a very sinple way) perforns on a single conputer
110. what Hadoop and ot her MapReduce inpl enentations do across a w de nunber
111. of conputers.

112.

113. # a structure to store the final output

114. data = []

115.

116. # MAP STEP

117. pairs = []

118. wi th open(file) as f:

119. # iterate over every line in the opened file

120. for line in f:

121. # ask our map step to process the line

122. out put = mapper (line)

123.

124. # store the newly conputed key/value pairs in our “pairs’ structure
125. pai rs. ext end(out put)

126.

127. # SHUFFLE STEP: aggregate all values for a given key

128. col l apsed = {}

129. for pair in pairs:

130. # split the pair into its key and val ue

131. key, value = pair

132.

133. # if the key doesn't exist yet in our dictionary, add it

134. i T coll apsed. get (key, None) is None:

135. col | apsed[key] = []

136.

137. # append the value to the list of values for a given key

138. col | apsed[key] . append(val ue)

139.

140.

141. # REDUCE STEP: provide all of the values for a key to the reducer

142. for key, values in collapsed.iteritens():

143. # the key is different; run the reduce step on our accunul ated val s

144, out put = reducer(key, val ues)

srcl2/ mapreduce. py

145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.

dat a. append(out put)

SORT STEP: sort the output by values in descending order
data. sort (key=itengetter(1), reverse=True)

all done!
return data

Using "Hadoop" and our reducer and unigram mapper, count the nunber of
instances each character appears in Carroll's "Alice and Wnderl and"
print "Unigram character counts:"
result = hadoop("aliceandwonderl| and.txt", unigram mapper, count_reducer)
for count in result:

print count

print

On to bigrans. Qur reducer is so sinple we can use the same one for both!
print "Bigramcharacter counts:"
result = hadoop("aliceandwonderl| and.txt", bigram nmapper, count_reducer)

there are many bigranms, so we'll only print the first 20
for count in result[0:10]:
print count

	src12/1.py
	src12/2.py
	src12/3.py
	src12/4.py
	src12/5.py
	src12/mapreduce.py

