
1

Day 5

This is CS50 for MBAs. Harvard Busines School. Spring 2015.

Cheng Gong

Table of Contents

Questions ... 1

Vault-Hide ... 2

Python .. 8

Questions

• Why would it not be accurate to describe HTML as a programming language?

HTML tells us how to structure something, but there’s no real logic like looping

or conditions. It does, however, provide us with an interface that we’ll be able to

manipulate with JavaScript, which is a programming language. And today we’ll look

at a back-end, which is what servers use to generate HTML, in a language called

Python.

• What does CSS allow you to do that HTML alone does not?

CSS allows you to stylize our webpage and separate the presentation from

structure. It also standardizes the appearance of our pages since we can control

it more precisely.

• Ending times are now on the syllabus.1

• If I do 'view page source' of CS50 for MBAs website, I see html code that I can more

or less understand now. Why is the content of Google home page’s 'view page source'

SO long and complex? What is included in the code?

The CS50 website is static, meaning there’s nothing that really changes after we

save something to it. Google’s homepage has the search box that starts changing

as soon as you type into it, with suggestions that drop down based on what you type

1 http://cs50.net/mba/syllabus/

http://cs50.net/mba/syllabus/
http://cs50.net/mba/syllabus/

Day 5

2

in, not to mention the other features it supports, so there’s more code involved. It

also minified, or compressed the code, like we talked about last time.

• I was unable to access the CS50 website again this afternoon. I received the same

message from my Chrome browser as I did on the first day, saying the DNS server

had an issue. Luckily, I had just learned how to manually change my DNS server to

Google’s public version, and I did so and am now happy be using the site to send this

message. I assume this was a test, Professor Malan…very clever.

This wasn’t a test. There might actually be a DNS server on HBS' campus that hasn’t

yet been updated, so if you have this problem, tell us.

• I’m trying to get my new web page to search the weather web page. I can get to a page

where you type in a zipcode to the box, but when I press the button, nothing happens.

My code looks as below. Any sense of what is wrong?

<body>

 <form actions="http://www.wunderground.com" method="get">

 <input name="q" type="text"/>

 <input type="submit" value="Let's see"/>

 </form>

</body>

actions should be action , and sometimes all it takes is one simple typo to

break everything. But there are now tools, IDEs, that help catch issues like this.

Multiple input boxes on the same page are just multiple form elements, and to see

how they are implemented, we can open Chrome’s Developer Tools.

The input name, q , can also be changed by the developer on the other side of

the form.

Vault-Hide

• An Android app called Vault-Hide is pretty popular and well-reviewed:

Day 5

3

• The program’s main feature seems to be keeping your photos and video secure:

• There’s a blog post the other day, from someone who managed to break the

"encryption" of the app. Though to be fair, the description never mentioned encryption,

just that it would keep things "secure."

• So this person, ninjadoge242 created a small image as a test, displayed here as

hexadecimal in the middle column:

2 https://ninjadoge24.github.io/

https://ninjadoge24.github.io/
https://ninjadoge24.github.io/

Day 5

4

The column on the left is the location of each row in bytes, and the column on the

right is an ASCII representation of the data, where the . isn’t a literal period but

binary data that doesn’t have a printable character.

• We see that our friend added his or her name to the end of the file, just so we can

recognize it more easily.

• Then our friend looked into the database on the phone and noticed that test.png

was actually stored in the file path there:

• That file was the same size as before, and a little different at the beginning, but it seems

that some of the file hasn’t been changed.

Day 5

5

• If we use the XOR operation to compare the two, it seems that the difference between

the two versions of the file was just 04 over and over again:

Remember that XOR compares two bits, and hexadecimal represents 4 bits in each

of its digits, so we can do this operation.

• Then our friend made a bigger image file, and found that only the first part of the file

was only being changed, this time with a key of cc :

Day 5

6

• The Vault app also asks for a password, so through trial and error our friend noticed

that there was some sort of pattern in the password and the key:

Day 5

7

• More importantly, though, there are only 8 bits in the key, so there are only 256 possible

values (255 if we don’t count 0).

• Instead of trying to figure out the key for every password, it was easier to just write

some code that tried all the possible keys, since there are so few:

Day 5

8

• So the implication now is that files "protected" by this app aren’t all that secure.

Python

• We’re gonna write some code, not too different than what we did with those Scratch

blocks, in a language called Python.

• Remember that blocks like [say] are statements, and blocks like < mouse down?

> are boolean expressions.

• Blocks like [if < >] are conditions.

• Bill Gates3 talks about conditions, and Mark Zuckerberg4 talks about loops.

• Rememebr that some languages need to be compiled from source code to object code

by a compiler, turning the words we typed into binary instructions that computers can

understand.

• Interpreted languages are a little different, because we can skip the compilation

process. This doesn’t make much of a difference with smaller programs, but definitely

does with larger ones.

• An interpreter is a program that reads source code in a particular language and converts

it to instructions line by line as it is run.

• Let’s start Python by converting our familiar:

[when green flag clicked]

[say [hello, world]]

to this:

3 https://www.youtube.com/watch?v=m2Ux2PnJe6E
4 https://www.youtube.com/watch?v=mgooqyWMTxk

https://www.youtube.com/watch?v=m2Ux2PnJe6E
https://www.youtube.com/watch?v=mgooqyWMTxk
https://www.youtube.com/watch?v=m2Ux2PnJe6E
https://www.youtube.com/watch?v=mgooqyWMTxk

Day 5

9

if __name__ == "__main__":

 print("hello, world")

You can see that this is logically similar, even if the syntax is a bit different.

The first line is the equivalent of the start of the program, sort of like a main function.

• The [say] block has been converted to print , with quotes around what we

want to print.

• A [forever] loop in Python looks like this:

while True:

 print("hello, world")

The indentation is how we place statements inside the loop, rather than outside.

The True can be replaced by a boolean, and the while checks whatever the

expression is and runs the statements if it’s true. In this case, True is always true,

so this loop will execute forever.

• A music player, clock, or spell-checker are examples of programs we might want to

run continuously.

• A while False: condition would be like a [never] block in Scratch, since

nothing inside could ever run.

• To disable code temporarily, we would "comment it out" with special syntax that tells

the interpreter to ignore it.

• There’s also case sensitivity here, where True is capitalized since it’s a predefined

word.

• We could replace while True: with if 1 == 1: , but that would only execute once.

• A [repeat [10]] block is written like this:

for i in range(10):

 print("hello, world")

• for starts a finite loop, where i is a variable, and range(10) , which is a function

that generates a list of values that start with 0 and ends with 9 .

• So it’s equivalent to this:

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

Day 5

10

 print("hello, world")

But we don’t want to do this, since we’re more likely to make a mistake, and range

is easier to read.

• We can also convert this:

[set counter to 0]

[forever]

| [say counter]

| [change counter by 1]

to this:

counter = 0

while True:

 print(counter)

 counter += 1

The strange syntax of += means we’re adding the value on the right, in this case

1 , and saving back to the variable counter .

• Python also doesn’t use braces to separate statements in a loop from those outside,

but rather indentation.

• Booleans in Python are simply x < y or (x < y) and (y < z) , if we wanted

to compare variables as a condition.

• For example, we could convert this:

[if x < y]

| [say x is less than y]

[else]

| [if x < y]

| | [say x is greater than y]

| [else]

| | [say x is equal to y]

| ____

to this:

Day 5

11

if x < y:

 print("x is less than y")

elif x > y:

 print("x is greater than y")

else:

 print("x is equal to y")

elif means else if , which other languages use, but Python uses the word

elif . Line by line, this piece of code translates to Scratch pretty straightforwardly.

• Python also has lists, which we’ve seen in Scratch like this:

[add [Orange] to [inventory]]

• In Python, lists are like arrays in that we can access any element with the [] notation,

but are flexible in size. (The cost of this, though, is speed and memory since under

the hood the interpreter has to keep track of all the elements somehow. An interpreted

language too, is slow, since it needs to be converted to binary as it’s run, but in return

we get more developer time since we don’t need to wait for code to compile.)

inventory = []

inventory.append("Orange")

To get "Orange" back, we’d use something like inventory[0] .

• We’ll switch to our Cloud9 workspace for a demo, located at ide.c9.io/jharvard/cs505.

• The same source files are here6.

• The bottom panel of the workspace looks like this:

5 https://ide.c9.io/jharvard/cs50
6 http://cdn.cs50.net/2015/mba/classes/5/src5/

https://ide.c9.io/jharvard/cs50
http://cdn.cs50.net/2015/mba/classes/5/src5/
https://ide.c9.io/jharvard/cs50
http://cdn.cs50.net/2015/mba/classes/5/src5/

Day 5

12

bash is the name of the program currently running, which is like a command line

that takes in what we type.

jharvard is our username, cs50 is the name of the computer, and ~/

workspace is the name of the folder we’re in.

• The contents of our workspace folder is in the panel to the left:

Day 5

13

Day 5

14

• We’re gonna switch to our Mac, since our (free and thus small) Cloud9 workspace was

overwhelmed by everyone in the class logging in at the same time.

• We’ll use TextEdit to make a super simple file and save it as hello.py :

print("hello, world")

• Then in the Terminal, we’ll see that it works:

% python hello.py

hello, world

%

(On David’s computer, he’s preconfigured his terminal to output just % instead of

his username and directory, like Cloud9 did.)

• Next, we’ll store the name of a person in a variable:

name = "David"

print("hello, name")

• But we don’t get what we intended:

% python hello.py

hello, name

%

• So we need to do this:

name = "David"

print("hello, {}".format(name))

The {} is like a placeholder, and name is the variable that will go in that

placeholder. .format is accessing the function of the string that formats it, which

comes with Python for all strings, and in this case it takes name and puts it into {} .

The double quotes around David is to indicate that this is a string, rather than a

reference to another variable or function.

• Now it works as expected:

% python hello.py

Day 5

15

hello, David

%

• Instead of David , we can try this:

name = raw_input()

print("hello, {}".format(name))

raw_input() is a function (since it has the parentheses afterwards) that comes

with Python that we can call, which will ask the user to type in a string when the

program is run:

% python hello.py

Lin

hello, Lin

% python hello.py

David

hello, David

%

The variable name stores whatever we typed in, and is printed back out again by

print .

• Once we get familiar with the syntax, things become more straightforward, since we

can look up functions or how to do things as we need them, and put them together like

blocks in Scratch to accomplish what we need.

• If we want to print {} as brackets, we can say:

name = raw_input()

print("hello, {}{{}}".format(name))

• We’re "escaping" the braces here by repeating them the second time (a Python

convention we can look up), so it prints out something like hello, David {} .

• Let’s open adder.py7:

7 http://cdn.cs50.net/2015/mba/classes/5/src5/adder.py

http://cdn.cs50.net/2015/mba/classes/5/src5/adder.py
http://cdn.cs50.net/2015/mba/classes/5/src5/adder.py

Day 5

16

"""Adds two numbers."""

x = int(raw_input("Give me an integer: "))

y = int(raw_input("Give me another integer: "))

print("The sum of {} and {} is {}!".format(x, y, x + y))

• The first line is a comment, which means the interpreter will ignore it, but it’s useful for

us since other people can read it.

• The lines with x and y seem to be getting input from the user again, but the string is

being turned to an integer with the int() function. x = int("123") , for example,

will turn the string "123" into the integer value 123 .

• Within the raw_input function, the string we pass in will be printed for the user before

we wait for input, just to help the user know that input is expected. And we only know

that we can do this because we looked it up in the documentation.

• Finally, we print the numbers x and y and their sum, using not one but now three

placeholders {} , and passing in all three values to our format function, separating

them with commas.

• Now we can run it:

% python adder.py

Give me an integer: 1

Give me another integer: 2

The sum of 1 and 2 is 3!

%

• Alternatively, if we end up with too many variables, we could use this format for

format (pun intended):

"""Adds two numbers."""

x = int(raw_input("Give me an integer: "))

y = int(raw_input("Give me another integer: "))

print("The sum of {first} and {second} is {third}!".format({

 "first": x,

 "second": y,

 "third": x + y

}))

Day 5

17

Now we’re giving names to each of the expressions to put them in the correct place.

• Let’s look at conditions-0.py8:

"""Tells user if his or her input is positive or negative (somewhat

 inaccurately). Demonstrates use of if-else construct."""

ask user for an integer

n = int(raw_input("I'd like an integer please: "))

analyze user's input (somewhat inaccurately)

if n > 0:

 print("You picked a positive number!")

else:

 print("You picked a negative number!")

The # symbol indicates a comment of one line, just like """ .

This program also gets an integer from the user, but it’s inaccurate because 0 will

be categoried as negative.

• We can fix this in conditions-1.py9:

"""Tells user if his or her input is positive or negative. Demonstrates

 use of if-elif-else construct."""

ask user for an integer

n = int(raw_input("I'd like an integer please: "))

analyze user's input (somewhat inaccurately)

if n > 0:

 print("You picked a positive number!")

elif n == 0:

 print("You picked zero!")

else:

 print("You picked a negative number!")

The elif means "else if", so now there are three cases.

• Equivalently, we could do this, since the order of our conditions doesn’t matter:

8 http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-0.py
9 http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-1.py

http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-0.py
http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-1.py
http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-0.py
http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-1.py

Day 5

18

"""Tells user if his or her input is positive or negative. Demonstrates

 use of if-elif-else construct."""

ask user for an integer

n = int(raw_input("I'd like an integer please: "))

analyze user's input (somewhat inaccurately)

if n > 0:

 print("You picked a positive number!")

elif n < 0:

 print("You picked a negative number!")

else:

 print("You picked zero!")

• Now let’s look at conditions-2.py10:

"""Assesses the size of user's input. Demonstrates use of Boolean

 ANDing."""

ask user for an integer

n = int(raw_input("Give me an integer between 1 and 10: "))

judge user's input

if n >= 1 and n <= 3:

 print("You picked a small number.")

elif n >= 4 and n <= 6:

 print("You picked a medium number.")

elif n >= 7 and n <= 10:

 print("You picked a big number.")

else:

 print("You picked an invalid number.")

So here we have more branches, but now we have # , >= , and and , which all

have equivalents in Scratch.

And we have to separate the conditions, since not all languages support expressions

like 1 # n # 3 .

• What might positive.py11 do?

10 http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-2.py
11 http://cdn.cs50.net/2015/mba/classes/5/src5/positive.py

http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-2.py
http://cdn.cs50.net/2015/mba/classes/5/src5/positive.py
http://cdn.cs50.net/2015/mba/classes/5/src5/conditions-2.py
http://cdn.cs50.net/2015/mba/classes/5/src5/positive.py

Day 5

19

while True:

 n = int(raw_input("Please give me a positive int: "))

 if (n >= 1):

 break

print("Thanks for the positive int!")

It looks like we’re asking for integers from the user again, and only if the number we

get is positive, do we do something called break . Since we’re inside this while

True loop that continues forever, we need to call break which will stop the loop.

(break also stops for loops, if we needed to.)

• It works as we’d expect, except, if we type in a name, we get a nice error:

% python positive.py

Please give me a positive int: Lin

Traceback (most recent call last):

 File "positive.py", line 2, in <module>

 n = int(raw_input("Please give me a positive int: "))

ValueError: invalid literal for int() with base 10: 'Lin'

%

It looks like it’s telling us the error is in line 2, and something about int , so we can

deduce that the error is about assuming the input being an int , and not handling

other cases.

• Another fun trick is to add this line:

#!/usr/bin/env python

to the top of files, so we can run them directly instead of python hello.py .

• We’ll change hello.py to look like this:

#!/usr/bin/env python

print("hello, world")

• And then change the permissions of the files like this:

% chmod a+x hello.py

Day 5

20

chmod is a program that changes the permissions of files, and a+x means that

all, everyone, will have x, executable permissions, for the file hello.py .

• If we rename the file with a program called mv like so:

% mv hello.py hello

• Then we can just run it:

% ./hello

hello, world

%

• Next time we’ll move to the web context, where we won’t be printing to our screen but

generating exciting HTML content.

	Day 5
	Table of Contents
	Questions
	Vault-Hide
	Python

