
1

Day 7

This is CS50 for MBAs. Harvard Busines School. Spring 2015.

Cheng Gong

Table of Contents

News ... 1

Questions ... 1

Another News ... 3

Storing Data ... 4

News

• Check out some of Colton’s music here1.

• In other news, the DNS for cs50.harvard.edu should be fully updated by now

across HBS' servers.

• Tor is an anonymization network, where people’s data is bounced between other

people on the network, so tracing where the data really came from becomes much

harder.

• There’s this device available, called an Anonabox, that you can just plug into to access

the Tor network, instead of downloading and configuring software. But there were major

security flaws, like the lack of password protection for its WiFi and the ability for anyone

nearby to snoop on its traffic, according to Wired2. So the takeaway here is to not trust

mysterious projects so easily.

Questions

• Are gem installs in ruby similar to installing frameworks like Flask in Python?

1 https://cs50.harvard.edu/music
2 http://www.wired.com/2015/04/anonabox-recall/

https://cs50.harvard.edu/music
http://www.wired.com/2015/04/anonabox-recall/
https://cs50.harvard.edu/music
http://www.wired.com/2015/04/anonabox-recall/

Day 7

2

We installed the package with a program called pip , and in Ruby packages are

called "gems," so the short answer is yes.

• What’s the difference between an object oriented language and the languages we’ve

talked about so far?

Object-oriented languages have the convention of storing functionality inside

objects that contain related data and functions, which means that, for example, a

data structure like a stack will have operations like pop or push (getting or putting

items, respectively) and properties like size. In a language like C, the same can be

achieved, but with more code and less readability than in object-oriented languages.

Most of what we do now actually is object-oriented in some sense.

• Christina introduces herself as a course assistant who’s been at office hours to answer

questions, and is also a full-time PM at TripAdvisor.

• Are there inherent advantages in using procedural, functional, and object-oriented

languages in the same way that there are advantages in compiled vs. interpreted

languages?

Different languages lend themselves to different kinds of jobs more easily, so yes,

as they are different tools.

• Are all programming languages in English?

In general they are, though programmers might put comments and variable

names in their own language. There is a list here: wikipedia.org/wiki/Non-English-

based_programming_languages3 and a discussion here: blogs.msdn.com/b/

alfredth/archive/2011/07/21/why-are-all-programming-languages-in-english.aspx4.

• What were the key takeaways of today’s [yesterday’s] class? I followed the demos, but

was not sure what the generalizable principles are. I took away:

You can create functions so you dont have to re-write. These can be powerful and

speed up things in all manner of ways

David: This speeds up development time, but performance might be a tiny bit

slower. Though the benefit does exceed the costs in this case, since we have

such fast computers these days.

You can use other people’s pre-coded functions via libraries

3 http://en.wikipedia.org/wiki/Non-English-based_programming_languages
4 http://blogs.msdn.com/b/alfredth/archive/2011/07/21/why-are-all-programming-languages-in-english.aspx

http://en.wikipedia.org/wiki/Non-English-based_programming_languages
http://en.wikipedia.org/wiki/Non-English-based_programming_languages
http://blogs.msdn.com/b/alfredth/archive/2011/07/21/why-are-all-programming-languages-in-english.aspx
http://blogs.msdn.com/b/alfredth/archive/2011/07/21/why-are-all-programming-languages-in-english.aspx
http://en.wikipedia.org/wiki/Non-English-based_programming_languages
http://blogs.msdn.com/b/alfredth/archive/2011/07/21/why-are-all-programming-languages-in-english.aspx

Day 7

3

You can use python to change the html code itself

Your code can pull from the url line What else was a generalizable lesson? (there

were certainly several wow moments too—the spiderman ones, but were they

generalizable?)

David has these:

Using one language to generate another, particularly for the web, like Python

generating HTML.

Code can be structured according to "design patterns" and MVC is one such

example, where through years of collective experience models of development

that work well have become conventions known as "design patterns". Good

developers would be familiar with these patterns.

There are multiple ways to solve a problem. Python is certainly not the only back-

end language that can generate HTML, and today we’ll look at multiple database

technologies.

• I’m afraid that I cannot access "Discuss" so would like to mention my problem here. I

could run all python programs in the folder "src6" well except froshims-3 and hello-2.

Ask us at the end of class so we can help in person.

• For this assignment, I changed the sentence within the hello.html file to something other

than hello, world and it did not update on the website. Is this because I had to change

the python code instead of the html file?

You might need to save the file and reload the browser, but if still having trouble we

can definitely help at the end of class.

Another News

• Stack Overflow, a discussion board website that many developers use to ask and

answer technical questions, recently released its annual Developer Survey5.

• This year they had about 26,000 or respondents, and there are facts like the country

they are from, the number of developers per capita, age (younger, towards the 20s and

30s), gender (predominantly male), experience (women have less, but it’s a sign that

5 http://stackoverflow.com/research/developer-survey-2015

http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015

Day 7

4

more women are beginning to enter the field), education (people tend to be self-taught),

most popular technologies (JavaScript, SQL, and Java are in the lead), and more.

• Though remember that this sample is of the developers who both use Stack Overflow

and respond to their surveys, so it might be fairly biased.

Storing Data

• Yesterday, all the pages we generated were thrown away. We could use caching, which

saves the more popular pages so we save some processing time next time we need

the page.

• But we need a place to store data, not just for caching but in general, like a customer’s

purchasing history.

• One of these technologies is called NoSQL, named because it’s not SQL, an older

query language (language that interacts with a database).

• NoSQL involves storing data in a format that look like this:

{

 "_id":"02134",

 "city":"ALLSTON",

 "loc":[

 -71.13286600000001,

 42.353519

],

 "pop":23775,

 "state":"MA"

}

• This format is called JSON, JavaScript Object Notation, and is just syntax and patterns

for saving data.

• Notice that this chunk of data, from an abstract level, seems to represent the city of

Allston. And programmers would think of it as an object, with characteristics that other

city objects would also have.

• So we have the curly braces that contain everything, and inside a list of key-value

pairs, as in a word in quotes, "_id" (the key), a colon, : , another word in quotes,

"02134" (the value), and then a comma, , , signalling the next key-value pair.

Day 7

5

• The value doesn’t necessarily need to be a string in quotes. For loc , it looks like the

value is an array, or list, given that there are square brackets [] around two things,

separated by a comma , . pop too has a value of just 23775 .

• To store lots of these objects, we might separate them with commas after the curly

braces. But there are no specifications, or schema, for what goes inside. In noSQL, we

don’t know what types of data we might have, but we have the ability to store nested

data.

• For example, let’s look at this picture:

This came from the documentation of MongoDB, a popular NoSQl database. The

object here seems to be representing a person’s account on some system. It seems

to have an id for itself, a username for this person, and contact information. But

contact has the value of another object, as denoted by the curly braces, inside

which are two more fields, phone and email . The author used another object

instead of a list because now we can label the values within this value, and access

Day 7

6

them more accurately. Otherwise, we might have needed to use contact[0]

or the like to access values. But with nested objects, we can say something like

contact["phone"] .

This also handles the case where the phone number is missing and

contact[0] actually gets the email, or vice versa.

A better design decision, instead of not having anything present if a value is

missing, is to use a special word like null to indicate that nothing is there.

• We could represent someone in an object like this:

{

 name: "Jihad",

 age: 25,

 phone: null,

 address: "123 Main Street Allson MA 02163"

}

But notice that the address actually has a lot of data that is just tossed in, where

there’s no way to get just the zip code without getting the whole address, and even

then, it might not be there in the order we expect it.

• So we can improve it like this:

{

 name: "Jihad",

 age: 25,

 phone: null,

 address: {

 street: "123 Main Street",

 city: "Allston",

 state: "MA",

 zip: "02163"

 }

}

The leading zero in the zip code will disappear when we save it as a number, so

we’ll save it as a string.

• If we had just an Excel file with columns, we might have something that looks like this:

Day 7

7

We’re trying to store the hierarchy here, and we could actually be even more

granular:

{

 name: "Jihad",

 age: 25,

 phone: null,

 address: {

 street: {

 number: 123,

 basename: "Main",

 suffix: "Street"

 }

 city: "Allston",

 state: "MA",

 zip: "02163"

 }

}

Day 7

8

So this could still be represented in an Excel file or SQL database, but it would

be harder and less straightforward.

• And we have lots of people from the same city, so storing the same information about

the city (city name and state and zip) seems unnecessary.

• So all we need is a zip code for the person, but information somewhere else, perhaps

in another file:

{

 name: "Jihad",

 age: 25,

 phone: null,

 address: {

 street: {

 number: 123,

 basename: "Main",

 suffix: "Street"

 }

 city: "Allston",

 state: "MA",

 zip: "02163"

 }

}

{

 zip: "02163",

 city: "Allston",

 state: "MA"

}

This is called normalization, where we just factor out common pieces that saves

space and allows us to change it for everyone more easily, but the price now is more

complex code to get the complete data and more time required.

• So in our original example, we can do this:

Day 7

9

The user object has a username , that points to other objects, one called contact

and one called access , that reference each other by means of some unique id .

• SQL is yet another language that allow us to query a database to manipulate data

efficiently in a large data set.

• A SQL database is like an Excel file with multiple sheets, where each sheet is called

a table in SQL.

• Queries include DELETE , INSERT , UPDATE , and SELECT .

• We can do this in a command prompt:

Day 7

10

• But there also exists a graphical user interface called phpMyAdmin:

Day 7

11

• There are data types in SQL like:

CHAR

VARCHAR

INT

BIGINT

DECIMAL

DATETIME

…

Day 7

12

• Someone’s name might be VARCHAR , which means that it will be a variable length

string made up of characters. Since people might have shorter or longer names, we

should use VARCHAR as opposed to CHAR , which is a fixed length. But we do have

to specify a maximum length, and the higher that length is, the slower the database’s

performance will be, since we wouldn’t be able to randomly access elements. (Think

back to arrays that had elements that were all the same size, so we could jump around

easily.)

• INT is a 32-bit integer, and a BIGINT is 64-bits.

• A DECIMAL allows us to set the number of significant digits of the number, so we can

have decimal numbers without the imprecision of floats.

• A DATETIME stores a date and time in the default format of YYYY-MM-DD hh:mm:ss ,

though we can format it in different ways.

• There are also indexes in SQL:

PRIMARY

INDEX

UNIQUE

FULLTEXT

Like Excel, data in SQL is stored in rows. This just means that we can set certain

columns to be special in all the rows. For example, making a column PRIMARY

means that it will be used to uniquely identify a row. This tends to be a number

instead of a username, since it will have fixed size and be relatively small and easier

to search through. INDEX tells the database that we plan to search for people

in this field frequently, so it can optimize for searches on that field. But this also

uses more memory, since we’re creating additional data structures to get higher

performance. It also takes time to update those structures, so if we choose to index

more than we actually use, we might lose performance. UNIQUE also indicates that

all the values in the column must be unique, even if we don’t plan to use it to identify

rows. (PRIMARY , then, has the characteristics of both INDEX and UNIQUE .)

FULLTEXT is just for data of any length.

• Finally, there are different storage engines for databases, which just means that the

binary zeroes and ones are stored on the hard drive somewhat differently by each of

these:

Day 7

13

InnoDB

MyISAM

Archive

Memory

…

• The Memory storage engine means that all of our data will be stored in RAM, making

it good for performance and temporary storage, like for a cache.

• Archive means the data is pre-compressed, so we’d want to use it for data we write but

not read too often, since it will take some time to decompress when we do but saves

space on our hard drive.

• InnoDB and MyISAM also have different characteristics that give them advantages and

disadvantages.

• If you have a Facebook username, you can see what your user id number on

Facebook is by going to a URL like this (David is showing off how low his is):

Day 7

14

• Suppose you and your roommate share a fridge, and you both like milk. So you come

home one day, and your roommate is still in class, and you see that there’s no more

milk in the fridge. So you leave for CVS to buy some milk. Meanwhile, your roommate

gets home and realizes that there’s no milk too, and happens to go to the nearby

supermarket, and by the time you both return, you have two gallons milk instead of

one. This was because you and your roommate didn’t communicate with each other

(texting didn’t exist back in David’s time, so this story made more sense then).

• This problem also comes from the fact that there is a lag between the time you see

there is no milk and the time you get back with it.

• In the database world, operations that happen simultaneously with no lag are called

atomic, so the milk replacement algorithm isn’t atomic.

• One of you could have marked in the fridge that you were going to get milk, and

analogously in the database world we "lock" a database when we want to do something

to it without the state being changed by someone else.

• In SQL there is syntax like this (which we won’t worry about the details of):

INSERT INTO table (id, symbol, shares) VALUES(7, "GOOG", 10)

 ON DUPLICATE KEY UPDATE shares = shares + VALUES(shares)

What we’re doing here is adding some stocks to a user’s account, and ON

DUPLICATE KEY UPDATE is telling our database to update a row’s values, instead

of creating a new one, if one with the same key exists already.

• We could also do what’s called a transaction:

START TRANSACTION;

UPDATE account SET balance = balance - 1000 WHERE number = 2;

UPDATE account SET balance = balance + 1000 WHERE number = 1;

COMMIT;

And this just guarantees that both of our queries will complete together, without

interruption.

• MongoDB uses locking, and SQL supports both locking at the table level and the row

level, so using transactions that only lock certain rows makes for better performance

since other users can update the other rows.

• What you’ll do tonight is to download a nice big database, with files that have queries

that look like this:

Day 7

15

It looks like this chunk is creating a table called employees with fields like

emp_no and their types, and also a NOT NULL option that require the fields to

have some value in every row.

emp_no is an INT , since we probably don’t expect to have billions of

employees, birth_date is a DATE , which makes sense, and first_name

is VARCHAR(14) , which might seem short but being a sample database, the

information probably won’t be changed, so we know in advance what the longest

name is. gender is ENUM , or enumeration, which means it will have the values

of either M or F . And finally, emp_no seems to be made the primary key, which

also makes sense.

• After we import all this data into Cloud9, we’ll use a tool called phpMyAdmin. We see

that our databases are on the left, and most of them already existed, except for the

one called employees :

Day 7

16

• Now if we click on it, we see lots of information:

• If we click around some more, we see a graphical version of what we just saw:

Day 7

17

• It’s also easy to create a table:

We’ve created some fields and set their data types as appropriate.

TEXT is another data type, for paragraphs and essays and longer text, but tends

to be on the slow side. And there are lots more fancy ones, even for coordinates.

• There are more options for our fields: COLLATION being the encoding, like ASCII or

others; ATTRIBUTE with an option of UNSIGNED , meaning that numbers can’t be

Day 7

18

negative; NULL if we want any to be optionally empty, which we select for major ;

and INDEX , so we’ll have id be our PRIMARY index, and major be INDEX too,

so we can search on it more quickly:

• A_I is short for AUTO_INCREMENT , which means that the database will automatically

increment the field every time a new row is added. This is useful for ID numbers, when

we don’t care what it actually is, but that it’s unique for every user. And we can also

select the storage engine at the bottom:

• So tonight we’ll play around with databases and not get to learn every little detail, but

just get a better understanding of how they work.

• SQL injection attacks are also a concern. Though the familiar Harvard PIN system

isn’t vulnerable to this attack, we’ll use it for the sake of discussion.

• The PIN login screen looks like this:

Day 7

19

• Suppose that the code, somewhere behind this page, includes bits like this:

$username = $_POST["username"];

$password = $_POST["password"];

query("SELECT * FROM users WHERE username='{$username}' AND

 password='{$password}'");

• First we get the variables $username and $password from some form, and

substitute them into our query, which looks (and is) correct.

• But a user could input something like this: (David changed the PIN field’s usual bullets

to actual text to reveal what the user has typed.)

Day 7

20

skroob is the username (a reference to Spaceballs), but the password field is a

bit fishy with 12345' OR '1' = '1 , especially with the single quotes.

• If we substitute that info into the form, the query will now look like this (note that

skroob has left off single quotes on the outside of his password, assuming that the

code for the query will, which it does):

$username = $_POST["username"];

$password = $_POST["password"];

query("SELECT * FROM users WHERE username='skroob' AND password='12345' OR

 '1' = '1'");

So now we’re selecting everything from the users table, WHERE username is

skroob AND password is 12345 , OR 1 = 1 . Since 1 = 1 is always true,

every row from the table will be selected.

• The takeaway here is that programmers should code defensively and anticipate users

placing evil syntax that changes what they’re trying to do.

Day 7

21

• One fix is to disallow certain characters in the input, that we check for before we

substitute it into our query, but this keeps us from choosing certain characters in our

passwords or other input.

• The fix is to escape input, or convert the characters to something that looks like this:

$username = $_POST["username"];

$password = $_POST["password"];

query("SELECT * FROM users WHERE username='skroob' AND password='12345\'

 OR \'1\' = \'1'");

The single quotes from input are marked by a \ in front of it, so it doesn’t end the

string but tells us it’s part of the string. We added the \ ourselves after getting the

input, and before substituting it in our query.

• So a SQL injection attack can happen when a programmer places strings into queries

carelessly. But there are libraries with functions that escape input that we can just use

pretty straightforwardly.

• And now you can understand this xkcd6.

We see that Robert’s name has a single quote, ending the query, which is okay, but

then we have another command called DROP TABLE that deletes a table.

6 http://xkcd.com/327/

http://xkcd.com/327/
http://xkcd.com/327/

	Day 7
	Table of Contents
	News
	Questions
	Another News
	Storing Data

