
1

Day 9

This is CS50 for MBAs. Harvard Busines School. Spring 2015.

Cheng Gong

Table of Contents

Capital One .. 1

Questions ... 3

Wat ... 5

Ajax ... 5

Capital One

• This morning, David tried to go on Capital One’s website, and saw this:

• On top, we notice that the title says 404 Not Found , but on the page, we also have

this 500 Internal Server Error .

Day 9

2

• To troubleshoot, we’d probably first check the DNS lookup of capitalone.com :

• We can copy and paste the first IP and see what happens:

• Hm, that resulted in the same, so DNS is probably working okay.

• Maybe that one server is down, and in the case of scaled websites with many servers,

we just got unlucky and reached a broken one.

• Large websites use servers that are called load balancers, which send users to many

other servers that actually have content, in order to balance the load. If we somehow

knew that, for instance, a cookie sent us to this particular server for content, maybe

we can fix this by clearing our cookies. Alternatively, we can open an Incognito tab in

Chrome, and see if that works, but alas, it doesn’t.

• But maybe only part of the site is broken, and indeed trying www.capitalone.com

worked:

Day 9

3

• So this brings up the question of why websites have this www in their address, or if

they need it at all. The short answer is that most companies choose to standardize

and have it one way or the other, and simply redirect if people enter the other

address. For example, CS50’s website used to live at cs50.net and then both

cs50.net and cs50.harvard.edu , but now cs50.net simply redirects to

cs50.harvard.edu . A practical reason is that cookies can be specific to entire

domains, like hbs.edu , or just www.hbs.edu , and so having more control over that

might be necessary.

Questions

• "I understand that JavaScript is pretty ubiquitous when it comes to developing

interactive websites, but I found a lot of information on why Python is better and very

little on why JavaScript is so popular. Can someone explain why JavaScript is actually

better for carrying out certain tasks?"

Browsers generally only support JavaScript code to detect events from the user,

like keystrokes, so other languages wouldn’t work for those cases. It’s possible to

compile Python into JavaScript that a browser understands, but that comes with

tradeoffs like speed and compatibility. A website can actually run both Python and

JavaScript, too, if the server has Python to generate HTML pages for the user, and

the page itself has some JavaScript code for user interactions.

Day 9

4

• "If you do validation both client side and on ruby or php, and use a library to generate

the additional/duplicate code, then if you change the original coding do you have to

run the library again?"

So we would use the library by calling some function in that library, and only the

relevant code would be run. If we changed the underlying code, then the short

answer would be yes, where the library to generate the new code would need to be

used again. And remembering our discussion last time, validation on just the client

side is insufficient because a user can turn off JavaScript or use the command-line

to pretend to be a browser. But it’s good because the user can see the results of

validation much faster than having their input sent to the server and waiting for a

response, since it happens within their browser.

• "I just logged into the survey via the Harvard PIN system to submit today’s assignment,

and I noticed that the web address is: https://harvard.qualtrics.com/…/?

email=&fullname=&huid=*&… . The asterix at the end was actually just my full

HUID. Given what we talked about before, perhaps it would be more secure if they

move to POST? Obviously perhaps that long seemingly gibberish string in the middle

would prevent me from logging in as someone else, but if not then by the looks of it, I

could pretend to be anyone when submitting assignments!

One reason GET is being used is because it’s easier to redirect users, and

Qualtrics, the survey vendor Harvard uses, in particular only accepts GET requests

to generate pages and receive inputs. As for the security aspect, the Harvard PIN

system probably passes something along with the HUID, in a mechanism called

single sign-on1. Facebook Login, for example, authenticates users without passing

passwords around, but rather other cryptographic keys that validate users' identities.

• In case anyone is interested - LastPass offers 6 month free of LastPass premium for

students, which gives you access to your lastpass library on mobile devices so you

don’t get stuck on different devices/away from your computer without your password

(and in iOS8, auto fills within your safari browser): https://lastpass.com/

edupromo.php

• Following up on today’s question, when you ask us how much time it took to complete

the assignment, do you just mean the questions we submit or also the "do as much

as you want" part?

1 https://en.wikipedia.org/wiki/Single_sign-on

https://harvard.qualtrics.com/??/?email=
https://harvard.qualtrics.com/??/?email=
https://en.wikipedia.org/wiki/Single_sign-on
https://lastpass.com/edupromo.php
https://lastpass.com/edupromo.php
https://en.wikipedia.org/wiki/Single_sign-on

Day 9

5

We’re interested in the total experience, so to speak, of the assignment: from the

time you read the first word to the time you press submit on the form, or the total

time you spent on the assignment, all things considered.

Wat

• Now we’ll watch a quick talk2, referencing weird features of languages, meant for fellow

programmers. For example, in JavaScript an empty array plus an empty array somehow

results in an empty string (wat)!

Ajax

• Let’s take a look at this picture:

• It might be a litle bit hard to understand, so let’s go through it. Back in the day (and

for many sites today), when you loaded a webpage and everything was done, you’d

have a page of content. And to get new content, you would click a link, changing to

another page for that new content. But Ajax is a new technique that allows webpages,

using JavaScript, to load new information from the server without changing the page.

Examples include Facebook’s news feed that updates, its chat box, Google’s chat

windows, Google Maps, and lots of others.

• On Google Maps, we can see this happening if we drag the map really fast:

2 https://www.destroyallsoftware.com/talks/wat

https://www.destroyallsoftware.com/talks/wat
https://www.destroyallsoftware.com/talks/wat

Day 9

6

• The parts that haven’t fully loaded look like that, but after a second or two the details

come in:

• The JavaScript code on that page is sending HTTP requests to Google’s servers, in

response to the map being dragged by the user, to get more information to draw that

new part of the map.

• Looking back at the picture, we also realize that Ajax, which stands for "asynchronous

JavaScript and XML", receive XML data (which is a markup lanuage similar to HTML)

that the JavaScript code can then display on the page.

• Unlike HTML, which has set tags, XML allows for any tag:

<class>

 <students>

 <student id="123">

Day 9

7

 <name>David</name>

 <email>malan@harvard.edu</email>

 </student>

 </students>

</class>

• This is kind of like a text-based database, where you have a hierarchy and type of data

you can define and store information in. However, for every object we have to have an

opening and closing tag, which adds up for size and time.

• JSON (JavaScript Object Notation) is an alternative where we have text that looks like

this:

var student =

{

 id: 1,

 house: "Eliot House",

 name: "Willy Xiao"

};

• This JavaScript object named student has key-value pairs, three of which to be

precise.

• The variable staff is an array of objects, since we see the square brackets []

wrapping multiple objects that have curly braces {} .

var staff = [

 {

 "id": 1,

 "house": "Eliot House",

 "name": "Willy Xiao"

 },

 {

 "id": 2,

 "house": "Mather House",

 "name": "Gabriel Guimaraes"

 },

 ...

];

• So we can represent the same data in JSON as we could in XML, but maybe more

efficiently.

Day 9

8

• Let’s look back to blink.html 3 from Day 8 that had a source like this:

3 http://cdn.cs50.net/2015/mba/classes/8/src8/blink.html

http://cdn.cs50.net/2015/mba/classes/8/src8/blink.html
http://cdn.cs50.net/2015/mba/classes/8/src8/blink.html

Day 9

9

<!--

blink.html

Flashes a greeting.

Computer Science 50

David J. Malan

-->

<!DOCTYPE html>

<html>

 <head>

 <script>

 // toggles visibility of greeting

 function blink()

 {

 var div = document.getElementById('greeting');

 if (div.style.visibility == "hidden")

 {

 div.style.visibility = "visible";

 }

 else

 {

 div.style.visibility = "hidden";

 }

 }

 // blink every 500ms

 window.setInterval(blink, 500);

 </script>

 <style>

 #greeting

 {

 font-size: 96pt;

 margin: 240px;

 text-align: center;

 }

 </style>

 <title>blink</title>

 </head>

 <body>

 <div id="greeting">

 hello, world

 </div>

 </body>

</html>

Day 9

10

• We have a div with an id of greeting , and the lines of code within the script

tag took that div and made it appear and disappear as though it were blinking.

• window.setInterval is calling a function blink every 500 milliseconds, but

notice that we’re passing in blink instead of blink() with the parentheses,

because we aren’t calling the blink() function at that moment but rather telling

window.setInterval to call the function with the name blink .

• Let’s open geolocation-0.html 4:

4 http://cdn.cs50.net/2015/mba/classes/8/src8/geolocation-0.html

http://cdn.cs50.net/2015/mba/classes/8/src8/geolocation-0.html
http://cdn.cs50.net/2015/mba/classes/8/src8/geolocation-0.html

Day 9

11

<!--

geolocation-0.html

Geolocates a user.

David J. Malan

malan@harvard.edu

-->

<!DOCTYPE html>

<html>

 <head>

 <script>

 function callback(position)

 {

 alert(position.coords.latitude + ', ' +

 position.coords.longitude);

 }

 function geolocate()

 {

 if (typeof(navigator.geolocation) != 'undefined')

 {

 navigator.geolocation.getCurrentPosition(callback);

 }

 else

 {

 alert('Your browser does not support geolocation!');

 }

 }

 </script>

 <title>geolocation-0</title>

 </head>

 <body onload="geolocate()"></body>

</html>

Day 9

12

• First of all, how might Chrome know our coordinates? Our laptop probably doesn’t

have GPS like our phones might. One answer is that our IP address might reveal

some idea of our location, but a more detailed location comes from the wireless access

points around us. At some point in the past, companies drove around capturing wireless

network IDs and their locations, so now our computer, given the signal strength of

wireless networks around it, can sort of triangulate our location with high accuracy,

even if some of them have changed. Our phones, too, transmit this data to Apple and

Google about our location and nearby access points, for even more recent and accurate

information.

This sounds creepy, but unfortunately we probably all agreed to this when we hit

"OK" on the Privacy Policies of apps and accounts we have.

Turning off "Location Services" or the like might turn it off, but some apps, like

Snapchat, require that permission in order for some of its functionality to work, so

we end up having to enable it anyways.

• Looking back up at the source for geolocation-0.html , we see that the HTML

really has one line, where the body element has an onload attribute that has the

value of geolocate , presumably indicating that the geolocate function should be

called when body has loaded.

In fact, onload is an event handler that determines what should be done when

something has loaded.

• So, looking for this geolocate function, we see it inside a <script> tag within the

<head> element of the page.

Within the geolocation function, we see an if-else condition that checks if the

browser, or navigator , has the geolocation feature supported. If it is, we call

the getCurrentPosition function of the geolocation feature of the browser.

And we also see another function, callback , both on top of the geolocation

function within the <script> tag, and also passed in to getCurrentPosition .

"Callback" is actually a technical term for a function that runs after asynchronous

code completes. That just means the code doesn’t wait for the first function to finish

running and then run the callback function, but rather go ahead and do other things,

and when the first function finishes, then the callback function will be executed. This

helps the browser, or programs in general that use this method, not appear to be

frozen. (The downside to this is that by the time the first function returns, something

might have changed and made the callback unnecessary or incorrect. Synchronous

Day 9

13

code, on the other hand, avoids this problem by blocking on the function, or waiting

for it to finish, but also has the tradeoff of sometimes appearing to be frozen.)

The callback function, then, takes the position argument that the

getCurrentPosition passes to it, and looks inside for the latitude and

longitude values, that we only knew were there by looking at JavaScript

documentation.

+ ', ' + part just combines the two parts with a comma, to display it to the

user in a nice way.

• Let’s look at geolocation-1.html 5:

5 http://cdn.cs50.net/2015/mba/classes/8/src8/geolocation-1.html

http://cdn.cs50.net/2015/mba/classes/8/src8/geolocation-1.html
http://cdn.cs50.net/2015/mba/classes/8/src8/geolocation-1.html

Day 9

14

<!--

geolocation-1.html

Geolocates a user, demonstrating an anonymous function.

David J. Malan

malan@harvard.edu

-->

<!DOCTYPE html>

<html>

 <head>

 <script>

 function geolocate()

 {

 if (typeof(navigator.geolocation) != 'undefined')

 {

 navigator.geolocation.getCurrentPosition(function(position) {

 alert(position.coords.latitude + ', ' +

 position.coords.longitude);

 });

 }

 else

 {

 alert('Your browser does not support geolocation!');

 }

 }

 </script>

 <title>geolocation-1</title>

 </head>

 <body onload="geolocate()"></body>

</html>

Now we no longer have a callback function, but what looks just like a function

is still where it would be, passed into getCurrentPosition .

Day 9

15

• This is called an anonymous, or lambda, function, where the function isn’t named but

rather placed where it would be executed, and is common for callback functions that

are only called once. And functions called multiple times in different places should still

be named, since it would be bad design otherwise.

• Asynchronous code is particularly important in JavaScript because lots of events, like

page loading, clicks, and key presses might all happen rapidly, and waiting on each

one would make the page appear a lot slower.

• Another feature of many browsers is local storage, as seen in storage.html 6:

6 http://cdn.cs50.net/2015/mba/classes/9/src9/storage.html

http://cdn.cs50.net/2015/mba/classes/9/src9/storage.html
http://cdn.cs50.net/2015/mba/classes/9/src9/storage.html

Day 9

16

<!DOCTYPE html>

<html>

 <head>

 <meta name="viewport" content="width=device-width">

 <script>

 function greet()

 {

 if (typeof(localStorage) !== 'undefined')

 {

 if (typeof(localStorage['counter']) === 'undefined')

 {

 localStorage['counter'] = 0;

 }

 alert('You have visited ' + localStorage['counter'] + '

 time(s) before!');

 localStorage['counter']++;

 }

 else

 {

 alert('Your browser does not support localStorage!');

 }

 }

 </script>

 <title>storage</title>

 </head>

 <body onload="greet()"></body>

</html>

• This feature allows webpages to store information in each user’s browser locally.

• By using the localstorage variable in JavaScript, we can put data inside it that we

can retrieve and edit later.

• We can remember things like preferences and settings, that we don’t really need to

save on our own server, and it’s also useful for offline work.

• Let’s look at ajax-0.html 7:

7 http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-0.html

http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-0.html
http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-0.html

Day 9

17

<!--

ajax-0.html

Gets stock quote from quote.php via Ajax with jQuery, displaying price

 with alert.

David J. Malan

malan@harvard.edu

-->

<!DOCTYPE html>

<html>

 <head>

 <script src="http://code.jquery.com/jquery-latest.min.js"></

script>

 <script>

 /**

 * Gets a quote via JSON.

 */

 function quote()

 {

 var url = 'quote.php?symbol=' + $('#symbol').val();

 $.getJSON(url, function(data) {

 alert(data.price);

 });

 }

 </script>

 <title>ajax-0</title>

 </head>

 <body>

 <form onsubmit="quote(); return false;">

 Symbol: <input autocomplete="off" id="symbol" type="text"/>

 <input type="submit" value="Get Quote"/>

 </form>

 </body>

</html>

Day 9

18

• If we type in a stock symbol and press Get Quote , we see the alert with the price,

but the page hasn’t changed:

• Looking at the HTML of the page, we see that the form element has an onsubmit

attribute (that presumably runs when the form is submitted) and calls the quote

function and then return false , or stopping the page from doing anything else.

• Looking up inside the <script> tag, we see this quote function that somehow "get

a quote via JSON." First, it builds a url variable that links to quote.php on our

server and includes the val , value, of the symbol element in the page (the input

element` of the form has an id of symbol). Then it calls the getJSON function

that’s part of the jQuery library (the $ indicates we’re using a jQuery function, and all

this we know from reading documentation online) with that url and displaying the

price attribute of data when we get it.

• If we manually type in the URL, we’d see something like this:

which is in JSON, which JavaScript can turn into an object we can access and use.

• Now let’s look at ajax-1.html 8:

8 http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-1.html

http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-1.html
http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-1.html

Day 9

19

<!--

ajax-1.html

Gets stock quote from quote.php via Ajax with jQuery, displaying price

 with alert.

David J. Malan

malan@harvard.edu

-->

<!DOCTYPE html>

<html>

 <head>

 <script src="http://code.jquery.com/jquery-latest.min.js"></

script>

 <script>

 $(function() {

 $('#quote').submit(function() {

 var url = 'quote.php?symbol=' + $('#symbol').val();

 $.getJSON(url, function(data) {

 alert(data.price);

 });

 return false;

 });

 });

 </script>

 <title>ajax-1</title>

 </head>

 <body>

 <form id="quote">

 Symbol: <input autocomplete="off" id="symbol" type="text"/>

 <input type="submit" value="Get Quote"/>

 </form>

 </body>

</html>

Day 9

20

• This is another way of doing the same thing, but the HTML no longer indicates the

function that should be run when the form is submitted. Instead, the JavaScript code

finds the element with id of quote (which is the form), and attaches the function

that gets the data to the submit event.

• Now let’s look at ajax-2.html 9:

9 http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-2.html

http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-2.html
http://cdn.cs50.net/2015/mba/classes/9/src9/ajax-2.html

Day 9

21

<!--

ajax-2.html

Gets stock quote from quote.php via Ajax with jQuery, embedding result in

 page itself.

David J. Malan

malan@harvard.edu

-->

<!DOCTYPE html>

<html>

 <head>

 <script src="http://code.jquery.com/jquery-latest.min.js"></

script>

 <script>

 /**

 * Gets a quote via JSON.

 */

 function quote()

 {

 var url = 'quote.php?symbol=' + $('#symbol').val();

 $.getJSON(url, function(data) {

 $('#price').html(data.price);

 });

 }

 </script>

 <title>ajax-2</title>

 </head>

 <body>

 <form onsubmit="quote(); return false;">

 Symbol: <input autocomplete="off" id="symbol" type="text"/>

 Price: to be determined

 <input type="submit" value="Get Quote"/>

 </form>

 </body>

</html>

Day 9

22

• This time, the page itself changes, rather than having an alert:

• We’ve added this tag within the form, and it’s like a <div> tag in that it

marks the beginning and end of a section of text. It’s given an id of price , and in the

JavaScript code we’ve set the html , or the actual HTML content inside the ,

to be whatever data.price is.

• If we opened Chrome’s inspector on a site like Twitter and looked at the Network tab,

we’d probably see HTTP requests every once in a while, indicating that their page is

indeed getting new data from a server.

• In the next class we’ll talk about scalability, but for now, this video10 will humorously

examine the pros and cons of two popular database systems, MongoDB and MySQL.

10 https://www.youtube.com/watch?v=b2F-DItXtZs

https://www.youtube.com/watch?v=b2F-DItXtZs
https://www.youtube.com/watch?v=b2F-DItXtZs

	Day 9
	Table of Contents
	Capital One
	Questions
	Wat
	Ajax

