
1

Problem Set 5: Mispellings

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Recommended Reading ... 2

Academic Honesty ... 2

Reasonable ... 3

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 5

Getting Started ... 5

Makefile ... 7

speller.c ... 10

questions.txt .. 11

texts ... 12

Spell Checking ... 14

load .. 15

check ... 15

size .. 15

unload .. 16

Checking Spell Checking ... 16

questions.txt .. 18

How to Submit ... 18

Step 1 of 2 .. 18

Step 2 of 2 .. 19

Objectives

• Allow you to design and implement your own data structure.

• Optimize your code’s (real-world) running time.

Problem Set 5: Mispellings

2

Recommended Reading

• Pages 18 – 20, 27 – 30, 33, 36, and 37 of http://www.howstuffworks.com/c.htm.

• Chapter 26 of Absolute Beginner’s Guide to C.

• Chapter 17 of Programming in C.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter to the Administrative Board and the outcome is Admonish, Probation, Requirement

to Withdraw, or Recommendation to Dismiss, the course reserves the right to impose local

sanctions on top of that outcome that may include an unsatisfactory or failing grade for

work submitted or for the course itself.

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

to the Administrative Board except in cases of repeated acts.

http://www.howstuffworks.com/c.htm

Problem Set 5: Mispellings

3

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

Problem Set 5: Mispellings

4

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Problem Set 5: Mispellings

5

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether taking the course SAT/UNS or for a letter grade, must ordinarily

submit this and all other problem sets to be eligible for a satisfactory grade unless granted

an exception in writing by the course’s heads.

Getting Ready

First, join Jackson and Lauren for tours of singly linked lists and hash tables.

https://www.youtube.com/watch?v=5nsKtQuT6E8

Next, join Kevin for a tour of tries.

https://www.youtube.com/watch?v=NKr6gWcXkIM

Finally, remind yourself how valgrind works if you’ve forgotten or not yet used!

https://www.youtube.com/watch?v=fvTsFjDuag8

Getting Started

Start up your appliance and, upon reaching John Harvard’s desktop, open a terminal

window (remember how?) and execute

update50

to ensure that your appliance is up-to-date!

Like Problem Set 4, this problem set comes with some distribution code that you’ll need

to download before getting started. Go ahead and execute

https://www.youtube.com/watch?v=5nsKtQuT6E8
https://www.youtube.com/watch?v=NKr6gWcXkIM
https://www.youtube.com/watch?v=fvTsFjDuag8

Problem Set 5: Mispellings

6

cd ~/Dropbox

in order to navigate to your ~/Dropbox directory. Then execute

wget http://cdn.cs50.net/2014/fall/psets/5/pset5/pset5.zip

in order to download a ZIP (i.e., compressed version) of this problem set’s distro. If you

then execute

ls

you should see that you now have a file called pset5.zip in your ~/Dropbox directory.

Unzip it by executing the below.

unzip pset5.zip

If you again execute

ls

you should see that you now also have a pset5 directory. You’re now welcome to delete

the ZIP file with the below.

rm -f pset5.zip

Now dive into that pset5 directory by executing the below.

cd pset5

Now execute

ls

and you should see that the directory contains the below.

Problem Set 5: Mispellings

7

dictionary.c dictionary.h Makefile questions.txt speller.c

Interesting!

Anyhow, theoretically, on input of size n, an algorithm with a running time of n is

asymptotically equivalent, in terms of O, to an algorithm with a running time of 2n. In the

real world, though, the fact of the matter is that the latter feels twice as slow as the former.

The challenge ahead of you is to implement the fastest spell-checker you can! By "fastest,"

though, we’re talking actual, real-world, noticeable time—none of that asymptotic stuff this

time.

In speller.c , we’ve put together a program that’s designed to spell-check a file after

loading a dictionary of words from disk into memory. Unfortunately, we didn’t quite get

around to implementing the loading part. Or the checking part. Both (and a bit more) we

leave to you!

Before we walk you through speller.c , go ahead and open up dictionary.h with

gedit . Declared in that file are four functions; take note of what each should do. Now

open up dictionary.c . Notice that we’ve implemented those four functions, but only

barely, just enough for this code to compile. Your job for this problem set is to re-implement

those functions as cleverly as possible so that this spell-checker works as advertised. And

fast!

Let’s get you started.

Makefile

Recall that make automates compilation of your code so that you don’t have to execute

clang manually along with a whole bunch of switches. However, as your programs grow

in size, make won’t be able to infer from context anymore how to compile your code; you’ll

need to start telling make how to compile your program, particularly when they involve

multiple source (i.e., .c) files, as in the case of this problem set. And so we’ll utilize a

Makefile , a configuration file that tells make exactly what to do. Open up Makefile

with gedit , and let’s take a tour of its lines.

The line below defines a variable called CC that specifies that make should use clang

for compiling.

Problem Set 5: Mispellings

8

CC = clang

The line below defines a variable called CFLAGS that specifies, in turn, that clang

should use some flags, most of which should look familiar.

CFLAGS = -ggdb3 -O0 -Qunused-arguments -std=c99 -Wall -Werror

The line below defines a variable called EXE , the value of which will be our program’s

name.

EXE = speller

The line below defines a variable called HDRS , the value of which is a space-separated

list of header files used by speller .

HDRS = dictionary.h

The line below defines a variable called LIBS , the value of which is should be a space-

separated list of libraries, each of which should be prefixed with -l . (Recall our use of

-lcs50 earlier this term.) Odds are you won’t need to enumerate any libraries for this

problem set, but we’ve included the variable just in case.

LIBS =

The line below defines a variable called SRCS , the value of which is a space-separated

list of C files that will collectively implement speller.

SRCS = speller.c dictionary.c

The line below defines a variable called OBJS , the value of which is identical to that of

SRCS , except that each file’s extension is not .c but .o .

OBJS = $(SRCS:.c=.o)

Problem Set 5: Mispellings

9

The lines below define a "target" using these variables that tells make how to compile

speller.

$(EXE): $(OBJS) Makefile

 $(CC) $(CFLAGS) -o $@ $(OBJS) $(LIBS)

The line below specifies that our .o files all "depend on" dictionary.h and

Makefile so that changes to either induce recompilation of the former when you run

make .

$(OBJS): $(HDRS) Makefile

Finally, the lines below define another target for cleaning up this problem set’s directory.

clean:

 rm -f core $(EXE) *.o

Know that you’re welcome to modify this Makefile as you see fit. In fact, you should

if you create any .c or .h files of your own. But be sure not to change any tabs (i.e.,

\t) to spaces, since make expects the former to be present below each target. To be

safe, uncheck Use Spaces under Tab Width at the bottom of gedit 's window before

modifying Makefile .

The net effect of all these lines is that you can compile speller with a single command,

even though it comprises quite a few files:

make speller

Even better, you can also just execute:

make

And if you ever want to delete speller plus any core or .o files, you can do so with a

single command:

make clean

Problem Set 5: Mispellings

10

In general, though, anytime you want to compile your code for this problem set, it should

suffice to run:

make

speller.c

Okay, next open up speller.c with gedit and spend some time looking over

the code and comments therein. You won’t need to change anything in this file, but

you should understand it nonetheless. Notice how, by way of getrusage , we’ll be

"benchmarking" (i.e., timing the execution of) your implementations of check , load ,

size , and unload . Also notice how we go about passing check , word by word, the

contents of some file to be spell-checked. Ultimately, we report each misspelling in that

file along with a bunch of statistics.

Notice, incidentally, that we have defined the usage of speller to be

Usage: speller [dictionary] text

where dictionary is assumed to be a file containing a list of lowercase words, one

per line, and text is a file to be spell-checked. As the brackets suggest, provision of

dictionary is optional; if this argument is omitted, speller will use /home/cs50/

pset5/dictionaries/large by default. In other words, running

./speller text

will be equivalent to running

./speller ~cs50/pset5/dictionaries/large text

where text is the file you wish to spell-check. Suffice it to say, the former is easier to

type! (Of course, speller will not be able to load any dictionaries until you implement

load in dictionary.c ! Until then, you’ll see Could not load.)

Within the default dictionary, mind you, are 143,091 words, all of which must be loaded

into memory! In fact, take a peek at that file to get a sense of its structure and size, as

Problem Set 5: Mispellings

11

with gedit . Notice that every word in that file appears in lowercase (even, for simplicity,

proper nouns and acronyms). From top to bottom, the file is sorted lexicographically, with

only one word per line (each of which ends with \n). No word is longer than 45 characters,

and no word appears more than once. During development, you may find it helpful to

provide speller with a dictionary of your own that contains far fewer words, lest

you struggle to debug an otherwise enormous structure in memory. In /home/cs50/

pset5/dictionaries/small is one such dictionary. To use it, execute

./speller ~cs50/pset5/dictionaries/small text

where text is the file you wish to spell-check. Don’t move on until you’re sure you

understand how speller itself works!

Odds are, you didn’t spend enough time looking over speller.c . Go back one square

and walk yourself through it again!

questions.txt

Okay, technically that last problem induced an infinite loop. But we’ll assume you broke out

of it. Open up questions.txt with gedit and answer each of the following questions

in one or more sentences.

0. What is pneumonoultramicroscopicsilicovolcanoconiosis?

1. According to its man page, what does getrusage do?

2. Per that same man page, how many members are in a variable of type struct

rusage ?

3. Why do you think we pass before and after by reference (instead of by value) to

calculate , even though we’re not changing their contents?

4. Explain as precisely as possible, in a paragraph or more, how main goes about

reading words from a file. In other words, convince us that you indeed understand how

that function’s for loop works.

5. Why do you think we used fgetc to read each word’s characters one at a time rather

than use fscanf with a format string like "%s" to read whole words at a time? Put

another way, what problems might arise by relying on fscanf alone?

Problem Set 5: Mispellings

12

6. Why do you think we declared the parameters for check and load as const ?

texts

So that you can test your implementation of speller , we’ve also provided you with a

whole bunch of texts, among them the script from Austin Powers: International Man of

Mystery, a sound bite from Ralph Wiggum, three million bytes from Tolstoy, some excerpts

from Machiavelli and Shakespeare, the entirety of the King James V Bible, and more. So

that you know what to expect, open and skim each of those files, as with gedit . For

instance, to open austinpowers.txt , open a terminal window and execute the below.

gedit ~cs50/pset5/texts/austinpowers.txt

Alternatively, launch gedit , select File > Open…, click Computer at left (under

Devices), double-click home at right, click cs50 at right, double-click pset5 at right,

double-click texts at right, then double-click austinpowers.txt at right. (If you get lost,

simply start these steps over!)

Now, as you should know from having read over speller.c carefully, the output of

speller , if executed with, say,

./speller ~cs50/pset5/texts/austinpowers.txt

will eventually resemble the below. For now, try executing the staff’s solution (using the

default dictionary) with the below.

~cs50/pset5/speller ~cs50/pset5/texts/austinpowers.txt

Below’s some of the output you’ll see. For amusement’s sake, we’ve excerpted some of

our favorite "misspellings." And lest we spoil the fun, we’ve omitted our own statistics for

now.

Problem Set 5: Mispellings

13

MISSPELLED WORDS

[...]

Bigglesworth

[...]

Fembots

[...]

Virtucon

[...]

friggin'

[...]

shagged

[...]

trippy

[...]

WORDS MISSPELLED:

WORDS IN DICTIONARY:

WORDS IN TEXT:

TIME IN load:

TIME IN check:

TIME IN size:

TIME IN unload:

TIME IN TOTAL:

TIME IN load represents the number of seconds that speller spends executing

your implementation of load . TIME IN check represents the number of seconds that

speller spends, in total, executing your implementation of check . TIME IN size

represents the number of seconds that speller spends executing your implementation

of size . TIME IN unload represents the number of seconds that speller spends

executing your implementation of unload . TIME IN TOTAL is the sum of those four

measurements.

Note that these times may vary somewhat across executions of speller ,

depending on what else your appliance is doing, even if you don’t change your code.

Incidentally, to be clear, by "misspelled" we simply mean that some word is not in the

dictionary provided.

And now this:

Problem Set 5: Mispellings

14

https://www.youtube.com/watch?v=RIevazPIPzU

Spell Checking

Alright, the challenge now before you is to implement load , check , size , and

unload as efficiently as possible, in such a way that TIME IN load , TIME IN check ,

TIME IN size , and TIME IN unload are all minimized. To be sure, it’s not obvious

what it even means to be minimized, inasmuch as these benchmarks will certainly vary as

you feed speller different values for dictionary and for text . But therein lies the

challenge, if not the fun, of this problem set. This problem set is your chance to design.

Although we invite you to minimize space, your ultimate enemy is time. But before you

dive in, some specifications from us.

• You may not alter speller.c .

• You may alter dictionary.c (and, in fact, must in order to complete the

implementations of load , check , size , and unload), but you may not alter the

declarations of load , check , size , or unload .

• You may alter dictionary.h , but you may not alter the declarations of load ,

check , size , or unload .

• You may alter Makefile .

• You may add functions to dictionary.c or to files of your own creation so long as

all of your code compiles via make .

• Your implementation of check must be case-insensitive. In other words, if foo is

in dictionary, then check should return true given any capitalization thereof; none of

foo , foO , fOo , fOO , fOO , Foo , FoO , FOo , and FOO should be considered

misspelled.

• Capitalization aside, your implementation of check should only return true for

words actually in dictionary . Beware hard-coding common words (e.g., the), lest

we pass your implementation a dictionary without those same words. Moreover,

the only possessives allowed are those actually in dictionary . In other words, even

if foo is in dictionary , check should return false given foo’s if foo’s is

not also in dictionary .

• You may assume that check will only be passed strings with alphabetical characters

and/or apostrophes.

https://www.youtube.com/watch?v=RIevazPIPzU

Problem Set 5: Mispellings

15

• You may assume that any dictionary passed to your program will be structured

exactly like ours, lexicographically sorted from top to bottom with one word per line,

each of which ends with \n . You may also assume that dictionary will contain

at least one word, that no word will be longer than LENGTH (a constant defined in

dictionary.h) characters, that no word will appear more than once, and that each

word will contain only lowercase alphabetical characters and possibly apostrophes.

• Your spell-checker may only take text and, optionally, dictionary as input.

Although you might be inclined (particularly if among those more comfortable) to "pre-

process" our default dictionary in order to derive an "ideal hash function" for it, you

may not save the output of any such pre-processing to disk in order to load it back into

memory on subsequent runs of your spell-checker in order to gain an advantage.

• You may research hash functions in books or on the Web, so long as you cite the origin

of any hash function you integrate into your own code.

Alright, ready to go?

load

Implement load !

Allow us to suggest that you whip up some dictionaries smaller than the 143,091-word

default with which to test your code during development. And here’s Zamyla with some

additional guidance:

https://www.youtube.com/watch?v=E_1D17P-bM0

check

Implement check !

Allow us to suggest that you whip up some small files to spell-check before trying out, oh,

War and Peace. And here’s Zamyla again:

https://www.youtube.com/watch?v=r7CVY6O-XJw

size

Implement size !

https://www.youtube.com/watch?v=E_1D17P-bM0
https://www.youtube.com/watch?v=r7CVY6O-XJw

Problem Set 5: Mispellings

16

If you planned ahead, this one is easy! Here’s Zamyla!

https://www.youtube.com/watch?v=lO8k5CjLk4U

unload

Implement unload !

Be sure to free any memory that you allocated in load ! Here’s Zamyla with some final

suggestions!

https://www.youtube.com/watch?v=VodrNEvdBBc

In fact, be sure that your spell-checker doesn’t leak any memory at all. Recall that

valgrind is your newest best friend. Know that valgrind watches for leaks while

your program is actually running, so be sure to provide command-line arguments if you

want valgrind to analyze speller while you use a particular dictionary and/or

text, as in the below.

valgrind --leak-check=full ./speller ~cs50/pset5/texts/austinpowers.txt

If you run valgrind without specifying a text for speller , your implementations of

load and unload won’t actually get called (and thus analyzed).

And don’t forget about your other good buddy, gdb .

Checking Spell Checking

How to check whether your program is outting the right misspelled words? Well, you’re

welcome to consult the "answer keys" in ~cs50/pset5/keys , as with the below.

gedit ~cs50/pset5/keys/austinpowers.txt

Alternatively, you could run your program on some text in one window, as with the below.

./speller ~cs50/pset5/texts/austinpowers.txt

And you can then run the staff’s solution on the same text in another window, as with the

below.

https://www.youtube.com/watch?v=lO8k5CjLk4U
https://www.youtube.com/watch?v=VodrNEvdBBc

Problem Set 5: Mispellings

17

~cs50/pset5/speller ~cs50/pset5/texts/austinpowers.txt

And you could then compare the windows visually side by side. That could get tedious

quickly, though. So you might instead want to "redirect" your program’s output to a file (just

like you may have done with generate in Problem Set 3), as with the below.

./speller ~cs50/pset5/texts/austinpowers.txt > student.txt

~cs50/pset5/speller ~cs50/pset5/texts/austinpowers.txt > staff.txt

You can then compare both files side by side in the same window with a program like

diff , as with the below.

diff -y student.txt staff.txt

Alternatively, to save time, you could just compare your program’s output (assuming you

redirected it to, e.g., student.txt) against one of the answer keys without running the

staff’s solution, as with the below.

diff -y student.txt ~cs50/pset5/keys/austinpowers.txt

If your program’s output matches the staff’s, diff will output two columns that should be

identical except for, perhaps, the running times at the bottom. If the columns differ, though,

you’ll see a > or | where they differ. For instance, if you see

MISSPELLED WORDS MISSPELLED

 WORDS

FOTTAGE FOTTAGE

INT INT

 > EVIL'S

s s

 > EVIL'S

Farbissina Farbissina

that means your program (whose output is on the left) does not think that EVIL’s is

misspelled, even though the staff’s output (on the right) does, as is implied by the absence

of EVIL’s in the lefthand column and the presence of EVIL’s in the righthand column.

Problem Set 5: Mispellings

18

To test your code less manually (though still not exhaustively), you may also execute the

below:

check50 2014.fall.pset5.speller dictionary.c dictionary.h Makefile

Note that check50 does not check for memory leaks, so be sure to run valgrind as

prescribed as well.

How to assess just how fast (and correct) your code is? Well, as always, feel free to play

with the staff’s solution, as with the below, and compare its numbers against yours.

~cs50/pset5/speller ~cs50/pset5/texts/austinpowers.txt

questions.txt

Congrats! At this point, your speller-checker is presumably complete (and fast!), so it’s

time for a debriefing. In questions.txt , answer each of the following questions in a

short paragraph.

7. What data structure(s) did you use to implement your spell-checker? Be sure not to

leave your answer at just "hash table," "trie," or the like. Expound on what’s inside

each of your "nodes."

8. How slow was your code the first time you got it working correctly?

9. What kinds of changes, if any, did you make to your code in order to improve its

performance?

10.Do you feel that your code has any bottlenecks that you were not able to chip away at?

How to Submit

Step 1 of 2

When ready to submit, open up a Terminal window and navigate your way to ~/Dropbox .

Create a ZIP (i.e., compressed) file containing your entire pset5 directory by executing

the below. Incidentally, -r means "recursive," which in this case means to ZIP up

everything inside of pset5 , including any subdirectories (or even subsubdirectories!).

Problem Set 5: Mispellings

19

zip -r pset5.zip pset5

If you type ls thereafter, you should see that you have a new file called pset5.zip

in ~/Dropbox . (If you realize later that you need to make a change to some file and re-

ZIP everything, you can delete the ZIP file you already made with rm pset5.zip , then

create a new ZIP file as before.) * Once done creating your ZIP file, open up Chrome inside

of the appliance (not on your own computer) and visit cs50.harvard.edu/submit1, logging

in if prompted. * Click Submit toward the window’s top-left corner. * Under Problem Set 5

on the screen that appears, click Upload New Submission. * On the screen that appears,

click Add files…. A window entitled Open Files should appear. * Navigate your way

to pset5.zip , as by clicking jharvard, then double-clicking Dropbox. Once you find

pset5.zip , click it once to select it, then click Open. * Click Start upload to upload your

ZIP file to CS50’s servers. * On the screen that appears, you should see a window with

No File Selected. If you move your mouse toward the window’s lefthand side, you should

see a list of the files you uploaded. Click each to confirm the contents of each. (No need

to click any other buttons or icons.) If confident that you submitted the files you intended,

consider your source code submitted! If you’d like to re-submit different (or modified) files,

simply return to cs50.harvard.edu/submit2 and repeat these steps. You may re-submit as

many times as you’d like; we’ll grade your most recent submission, so long as it’s before

the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2015/spring/psets/5/ where a short form awaits. Once you

have submitted that form (as well as your source code), you are done!

This was Problem Set 5.

1 https://cs50.harvard.edu/submit
2 https://cs50.harvard.edu/submit

https://cs50.harvard.edu/submit
https://cs50.harvard.edu/submit
https://forms.cs50.net/2015/spring/psets/5/
https://cs50.harvard.edu/submit
https://cs50.harvard.edu/submit

	Problem Set 5: Mispellings
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	Makefile
	speller.c
	questions.txt
	texts

	Spell Checking
	load
	check
	size
	unload

	Checking Spell Checking
	questions.txt

	How to Submit
	Step 1 of 2
	Step 2 of 2

