
1

Problem Set 1: C

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Recommended Reading ... 2

diff pset1 hacker1 .. 2

Academic Honesty ... 2

Reasonable ... 2

Not Reasonable .. 3

Getting Started ... 4

Installing .. 4

Updating .. 5

Dropboxing .. 5

File Manager ... 6

gedit ... 6

Hello, C .. 9

CS50 Check ... 12

CS50 Style ... 14

Shorts ... 14

Bad Credit .. 15

Hello again, C .. 18

Itsa Mario ... 19

This is the Hacker Edition of Problem Set 1. It cannot be submitted for credit.

Objectives

• Get comfortable with Linux.

• Start thinking more carefully.

• Solve some problems in C.

Problem Set 1: C

2

Recommended Reading

• Pages 1 – 7, 9, and 10 of http://www.howstuffworks.com/c.htm.

• Chapters 1 – 6 of Programming in C.

diff pset1 hacker1

• Hacker Edition plays with credit cards instead of coins.

• Hacker Edition demands two half pyramids.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on the

course’s final project is permitted to the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

http://www.howstuffworks.com/c.htm

Problem Set 1: C

3

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

Problem Set 1: C

4

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Getting Started

Recall that the CS50 Appliance is a "virtual machine" (running an operating system called

Ubuntu, which itself is a flavor of Linux) that you can run inside of a window on your own

computer, whether you run Windows, Mac OS, or even Linux itself. To do so, all you need

is a "hypervisor" (otherwise known as a "virtual machine monitor"), software that tricks the

appliance into thinking that it’s running on "bare metal."

Alternatively, you could buy a new computer, install Ubuntu on it (i.e., bare metal), and

use that! But a hypervisor lets you do all that for free with whatever computer you already

have. Plus, the CS50 Appliance is pre-configured for CS50, so, as soon as you install it,

you can hit the ground running.

Installing

So let’s get a hypervisor and the CS50 Appliance installed on your computer. Head

to https://manual.cs50.net/appliance/2014/#how_to_install_appliance, where instructions

await. In particular, if running Mac OS, follow the instructions for VMware Fusion. If running

Windows or Linux, follow the instructions for VMware Workstation. Be sure to download

version 2014 of the CS50 Appliance, not 19 or earlier.

https://manual.cs50.net/appliance/2014/#how_to_install_appliance

Problem Set 1: C

5

Updating

Once you have the CS50 Appliance installed, go ahead and start it (per those same

instructions). A small window should open, inside of which the appliance should boot. A

few seconds or minutes later, you should find yourself logged in as John Harvard (whose

username is jharvard and whose password is crimson), with John Harvard’s desktop

before you.

If you find that the appliance runs unbearably slow on your PC, particularly if several

years old or a somewhat slow netbook, or if you see a hint about "long mode," try

the instructions at https://manual.cs50.net/virtualization and let us know if you still

need a hand.

Feel free to poke around, particularly the 50 Menu in the appliance’s bottom-left corner.

You should find the graphical user interface (GUI), called Xfce, reminiscent of both Mac

OS and Windows. Linux actually comes with a bunch of GUIs; Xfce is just one. If you’re

already familiar with Linux, you’re welcome to install other software via apt-get , but

the appliance should have everything you need for now. You’re also welcome to play

with the appliance’s various features, per the instructions at https://manual.cs50.net/

appliance/2014/#how_to_use_appliance, but this problem set will explicitly mention

anything that you need know or do.

Even if you just downloaded the appliance, ensure that it’s completely up-to-date by

opening a terminal window, as via Menu > Accessories > Terminal Emulator, typing

update50

and then hitting Enter on your keyboard. So long as your computer (and, thus, the

appliance) has Internet access, the appliance should proceed to download and install any

available updates.

Dropboxing

Next, follow the instructions at https://manual.cs50.net/appliance/2014/

#how_to_enable_dropbox to configure the appliance to use Dropbox so that your work is

automatically backed up, just in case something goes wrong with your appliance. (If you

really don’t want to use Dropbox, that’s fine, but realize your files won’t be backed up as

https://manual.cs50.net/virtualization
https://manual.cs50.net/appliance/2014/#how_to_use_appliance
https://manual.cs50.net/appliance/2014/#how_to_use_appliance
https://manual.cs50.net/appliance/2014/#how_to_enable_dropbox
https://manual.cs50.net/appliance/2014/#how_to_enable_dropbox

Problem Set 1: C

6

a result!) If you don’t yet have a Dropbox account, sign up when prompted for the free (2

GB) plan. You’re welcome to install Dropbox on your own computer as well (outside of

the appliance), per https://www.dropbox.com/install, but no need if you’d rather not; just

inside the appliance is fine.

If you’re already a Dropbox user but don’t want your personal files to be synched into the

appliance, simply enable Selective Sync, per the CS50 Manual’s instructions.

Incidentally, if curious how Dropbox itself works, allow us to introduce Thomas Carriero

'08 and Alex Allain '06, both former CS50 TFs!

http://www.youtube.com/watch?v=VECV6r9s5SE

File Manager

Okay, let’s create a folder (otherwise known as a "directory") in which your code for this

problem set will soon live. Go ahead and double-click Home on John Harvard’s desktop

(toward the appliance’s top-left corner). A window entitled jharvard - File Manager should

appear, indicating that you’re inside of John Harvard’s "home directory" (i.e., personal

folder). Then double-click the folder called Dropbox, at which point the window’s title

should change to Dropbox - File Manager. Next select File > Create Folder… in the

window’s top-left corner, input a name of hacker1, and then click Create. (If you misname

the folder, control-click the misnamed folder, select Rename…, enter a new name, and

click Rename.) Then double-click that hacker1 folder to open it. The window’s title should

change to hacker1 - File Manager, and you should see an otherwise empty folder (since

you just created it).

gedit

Okay, go ahead and close any open windows, then select Menu > Accessories > gedit.

(Recall that Menu is in the appliance’s bottom-left corner.) A window entitled Untitled

Document 1 - gedit should appear, inside of which is a tab entitled Untitled Document

1. Clearly the document is just begging to be saved. Go ahead and type hello (or

the ever-popular asdf) on line 1 of the document, and then notice how the tab’s name

is now prefixed with an asterisk (*), indicating that you’ve made changes since the file

was first opened. Select File > Save, and a window entitled Save As should appear.

Input hello.txt next to Name, then click Home under Places. You should then see

the contents of John Harvard’s home directory. Double-click Dropbox, then double-click

https://www.dropbox.com/install
http://www.youtube.com/watch?v=VECV6r9s5SE

Problem Set 1: C

7

hacker1, and you should find yourself inside that empty folder you created. Now, at the

bottom of this same window, you should see that the file’s default Character Encoding is

Unicode (UTF-8) and that the file’s default Line Ending is Unix/Linux. No need to change

either; just notice they’re there. That the file’s Line Ending is Unix/Linux just means that

gedit will insert (invisibly) \n at the end of any line of text that you type. Windows, by

contrast, uses \r\n , and Mac OS uses \r , but more on those (delightfully annoying)

details some other time.

Okay, click Save in the window’s bottom-right corner. The window should close, and

you should see that the original window’s title is now hello.txt (~/Dropbox/hacker1) -

gedit. The parenthetical just means that hello.txt is inside of hacker1, which is inside

of Dropbox, which is inside of ~, which is shorthand notation for John Harvard’s home

directory. A useful reminder is all. The tab, meanwhile, should now be entitled hello.txt

(with no asterisk, unless you accidentally hit the keyboard again).

Okay, with hello.txt still open in gedit , notice that beneath your document is a

"terminal window" (aka "terminal emulator"), a command-line (i.e., text-based) interface

via which you can navigate the appliance’s hard drive and run programs (by typing their

name). Notice that the window’s "prompt" is

jharvard@appliance (~):

which means that you are logged into the appliance as John Harvard and that you are

currently inside of ~ (i.e., John Harvard’s home directory). If that’s the case, there should

be a Dropbox directory somewhere inside. Let’s confirm as much.

Click somewhere inside of that terminal window, and the prompt should start to blink. Type

ls

and then Enter. That’s a lowercase L and a lowercase S, which is shorthand notation

for "list." Indeed, you should then see a list of the folders inside of John Harvard’s home

directory, among which is Dropbox! Let’s open that folder, followed immediately by the

hacker1 folder therein. Type

cd Dropbox/hacker1

Problem Set 1: C

8

or even

cd ~/Dropbox/hacker1

followed by Enter to change your directory to ~/Dropbox/hacker1 (ergo, cd). You should

find that your prompt changes to

jharvard@appliance (~/Dropbox/hacker1):

confirming that you are indeed now inside of ~/Dropbox/hacker1 (i.e., a directory called

hacker1 inside of a directory called Dropbox inside of John Harvard’s home directory).

Now type

ls

followed by Enter. You should see hello.txt! Now, you can’t click or double-click on that

file’s name there; it’s just text. But that listing does confirm that hello.txt is where we hoped

it would be.

Let’s poke around a bit more. Go ahead and type

cd

and then Enter. If you don’t provide cd with a "command-line argument" (i.e., a directory’s

name), it whisks you back to your home directory by default. Indeed, your prompt should

now be:

jharvard@appliance (~):

Phew, home sweet home. Make sense? If not, no worries; it soon will! It’s in this terminal

window that you’ll soon be compiling your first program! For now, though, close gedit

(via File > Quit) and, with it, hello.txt.

Incidentally, if the need arises, know that you can transfer files to and

from the appliance per the instructions at https://manual.cs50.net/appliance/2014/

#how_transfer_files_between_appliance_and_your_computer.

https://manual.cs50.net/appliance/2014/#how_transfer_files_between_appliance_and_your_computer
https://manual.cs50.net/appliance/2014/#how_transfer_files_between_appliance_and_your_computer

Problem Set 1: C

9

Hello, C

First, a hello from Zamyla if you’d like a tour of what’s to come, particularly if less

comfortable.

http://www.youtube.com/watch?v=HkQD6aw7oDc

Shall we have you write your first program? Go ahead and launch gedit . (Remember

how?) You should find yourself faced with another Unsaved Document 1. Go ahead

and save the file as hello.c (not hello.txt) inside of hacker1 , just as before.

(Remember how?) Once the file is saved, the window’s title should change to hello.c (~/

Dropbox/hacker1) - gedit, and the tab’s title should change to hello.c. (If either does not,

best to close gedit and start fresh! Or ask for help!)

Go ahead and write your first program by typing these lines into the file (though you’re

welcome to change the words between quotes to whatever you’d like):

#include <stdio.h>

int main(void)

{

 printf("hello, world\n");

}

Notice how gedit adds "syntax highlighting" (i.e., color) as you type. Those colors aren’t

actually saved inside of the file itself; they’re just added by gedit to make certain syntax

stand out. Had you not saved the file as hello.c from the start, gedit wouldn’t know

(per the filename’s extension) that you’re writing C code, in which case those colors would

be absent.

Do be sure that you type in this program just right, else you’re about to experience your

first bug! In particular, capitalization matters, so don’t accidentally capitalize words (unless

they’re between those two quotes). And don’t overlook that one semicolon. C is quite

nitpicky!

When done typing, select File > Save (or hit ctrl-s), but don’t quit. Recall that the leading

asterisk in the tab’s name should then disappear. Click anywhere in the terminal window

beneath your code, and its prompt should start blinking. But odds are the prompt itself

is just

http://www.youtube.com/watch?v=HkQD6aw7oDc

Problem Set 1: C

10

jharvard@appliance (~):

which means that, so far as the terminal window’s concerned, you’re still inside of John

Harvard’s home directory, even though you saved the program you just wrote inside of ~/

Dropbox/hacker1 (per the top of gedit 's window). No problem, go ahead and type

cd Dropbox/hacker1

or

cd ~/Dropbox/hacker1

at the prompt, and the prompt should change to

jharvard@appliance (~/Dropbox/hacker1):

in which case you’re where you should be! Let’s confirm that hello.c is there. Type

ls

at the prompt followed by Enter, and you should see both hello.c and hello.txt ?

If not, no worries; you probably just missed a small step. Best to restart these past several

steps or ask for help!

Assuming you indeed see hello.c , let’s try to compile! Cross your fingers and then type

make hello

at the prompt, followed by Enter. (Well, maybe don’t cross your fingers whilst typing.) To

be clear, type only hello here, not hello.c . If all that you see is another, identical

prompt, that means it worked! Your source code has been translated to object code (0s

and 1s) that you can now execute. Type

./hello

Problem Set 1: C

11

at your prompt, followed by Enter, and you should see whatever message you wrote

between quotes in your code! Indeed, if you type

ls

followed by Enter, you should see a new file, hello , alongside hello.c and

hello.txt .

If, though, upon running make , you instead see some error(s), it’s time to debug! (If the

terminal window’s too small to see everything, click and drag its top border upward to

increase its height.) If you see an error like expected declaration or something no less

mysterious, odds are you made a syntax error (i.e., typo) by omitting some character or

adding something in the wrong place. Scour your code for any differences vis-à-vis the

template above. It’s easy to miss the slightest of things when learning to program, so do

compare your code against ours character by character; odds are the mistake(s) will jump

out! Anytime you make changes to your own code, just remember to re-save via File >

Save (or ctrl-s), then re-click inside of the terminal window, and then re-type

make hello

at your prompt, followed by Enter. (Just be sure that you are inside of ~/Dropbox/

hacker1 within your terminal window, as your prompt will confirm or deny.) If you see no

more errors, try running your program by typing

./hello

at your prompt, followed by Enter! Hopefully you now see precisely the below?

hello, world

If not, reach out for help!

Incidentally, if you find gedit 's built-in terminal window too small for your tastes, know

that you can open one in its own window via Menu > Programming > Terminal. You can

then alternate between gedit and Terminal as needed, as by clicking either’s name

along the appliance’s bottom.

Problem Set 1: C

12

Woo hoo! You’ve begun to program!

CS50 Check

Now let’s see if the program you just wrote is correct! Included in the CS50 Appliance is

check50 , a command-line program with which you can check the correctness of (some

of) your programs.

If not already there, navigate your way to ~/Dropbox/hacker1 by executing the

command below.

cd ~/Dropbox/hacker1

If you then execute

ls

you should see, at least, hello.c . Be sure it’s indeed spelled hello.c and not

Hello.c , hello.C , or the like. If it’s not, know that you can rename a file by executing

mv source destination

where source is the file’s current name, and destination is the file’s new name. For

instance, if you accidentally named your program Hello.c , you could fix it as follows.

mv Hello.c hello.c

Okay, assuming your file’s name is definitely spelled hello.c now, go ahead and

execute the below. Note that 2014.fall.hacker1.hello is just a unique identifier for

this problem’s checks.

check50 2014.fall.hacker1.hello hello.c

Assuming your program is correct, you should then see output like

Problem Set 1: C

13

:) hello.c exists

:) hello.c compiles

:) prints "hello, world\n"

where each green smiley means your program passed a check (i.e., test). You may also

see a URL at the bottom of check50 's output, but that’s just for staff (though you’re

welcome to visit it).

If you instead see yellow or red smileys, it means your code isn’t correct! For instance,

suppose you instead see the below.

:(hello.c exists

 \ expected hello.c to exist

:| hello.c compiles

 \ can't check until a frown turns upside down

:| prints "hello, world\n"

 \ can't check until a frown turns upside down

Because check50 doesn’t think hello.c exists, as per the red smiley, odds are you

uploaded the wrong file or misnamed your file. The other smileys, meanwhile, are yellow

because those checks are dependent on hello.c existing, and so they weren’t even run.

Suppose instead you see the below.

:) hello.c exists

:) hello.c compiles

:(prints "hello, world\n"

 \ expected output, but not "hello, world"

Odds are, in this case, you printed something other than hello, world\n verbatim, per

the spec’s expectations. In particular, the above suggests you printed hello, world ,

without a trailing newline (\n).

Know that check50 won’t actually record your scores in CS50’s gradebook. Rather, it

lets you check your work’s correctness before you submit your work. Once you actually

submit your work (per the directions at this spec’s end), CS50’s staff will use check50

to evaluate your work’s correctness officially.

Problem Set 1: C

14

CS50 Style

In addition to check50 , the CS50 Appliance comes with style50 , a tool with which you

can evaluate your code’s style vis-à-vis CS50’s style guide1. To run it on, say, hello.c ,

execute the below:

style50 hello.c

You should see zero or more lines of suggestions. Yellow smileys indicate warnings that

you should consider addressing. Red smileys indicate errors that you should definitely

address.

If you instead see java: command not found , execute sudo apt-get -y

install default-jre-headless (which will install software that we forgot to

install for you!), then try again.

Note that style50 is still a work in progress (a "beta" version, so to speak), so

best to consult CS50’s style guide2 for official guidance.

Shorts

Head to https://cs50.harvard.edu/shorts/1 and curl up with Nate’s short on libraries. Be

sure you’re reasonably comfortable answering the below when it comes time to submit

this problem set’s form!

• What’s a pre-processor? How does

#include <cs50.h>

relate?

• What’s a compiler?

• What’s an assembler?

• What’s a linker? How does

1 https://manual.cs50.net/style/
2 https://manual.cs50.net/style/

https://manual.cs50.net/style/
https://manual.cs50.net/style/
https://cs50.harvard.edu/shorts/1
https://manual.cs50.net/style/
https://manual.cs50.net/style/

Problem Set 1: C

15

-lcs50

relate?

Curl up with at least two other shorts at https://cs50.harvard.edu/shorts/1. Some additional

questions may be in your future!

Bad Credit

Odds are you have a credit card in your wallet. Though perhaps the bill does not (yet) get

sent to you! That card has a number, both printed on its face and embedded (perhaps with

some other data) in the magnetic stripe on back. That number is also stored in a database

somewhere, so that when your card is used to buy something, the creditor knows whom

to bill. There are a lot of people with credit cards in this world, so those numbers are pretty

long: American Express uses 15-digit numbers, MasterCard uses 16-digit numbers, and

Visa uses 13- and 16-digit numbers. And those are decimal numbers (0 through 9), not

binary, which means, for instance, that American Express could print as many as 10^(15)

= 1,000,000,000,000,000 unique cards! (That’s, ahem, a quadrillion.)

Now that’s a bit of an exaggeration, because credit card numbers actually have some

structure to them. American Express numbers all start with 34 or 37; MasterCard numbers

all start with 51, 52, 53, 54, or 55; and Visa numbers all start with 4. But credit card numbers

also have a "checksum" built into them, a mathematical relationship between at least one

number and others. That checksum enables computers (or humans who like math) to

detect typos (e.g., transpositions), if not fraudulent numbers, without having to query a

database, which can be slow. (Consider the awkward silence you may have experienced

at some point whilst paying by credit card at a store whose computer uses a dial-up modem

to verify your card.) Of course, a dishonest mathematician could certainly craft a fake

number that nonetheless respects the mathematical constraint, so a database lookup is

still necessary for more rigorous checks.

So what’s the secret formula? Well, most cards use an algorithm invented by Hans Peter

Luhn, a nice fellow from IBM. According to Luhn’s algorithm, you can determine if a credit

card number is (syntactically) valid as follows:

1. Multiply every other digit by 2, starting with the number’s second-to-last digit, and then

add those products' digits together.

https://cs50.harvard.edu/shorts/1

Problem Set 1: C

16

2. Add the sum to the sum of the digits that weren’t multiplied by 2.

3. If the total’s last digit is 0 (or, put more formally, if the total modulo 10 is congruent to

0), the number is valid!

That’s kind of confusing, so let’s try an example with Daven’s AmEx: 378282246310005.

1. For the sake of discussion, let’s first underline every other digit, starting with the

number’s second-to-last digit:

378282246310005

Okay, let’s multiply each of the underlined digits by 2:

7•2 + 2•2 + 2•2 + 4•2 + 3•2 + 0•2 + 0•2

That gives us:

14 + 4 + 4 + 8 + 6 + 0 + 0

Now let’s add those products' digits (i.e., not the products themselves) together:

1 + 4 + 4 + 4 + 8 + 6 + 0 + 0 = 27

2. Now let’s add that sum (27) to the sum of the digits that weren’t multiplied by 2:

27 + 3 + 8 + 8 + 2 + 6 + 1 + 0 + 5 = 60

3. Yup, the last digit in that sum (60) is a 0, so Daven’s card is legit!

So, validating credit card numbers isn’t hard, but it does get a bit tedious by hand. Let’s

write a program.

In credit.c , write a program that prompts the user for a credit card number and then

reports (via printf) whether it is a valid American Express, MasterCard, or Visa card

number, per the definitions of each’s format herein. So that we can automate some tests of

your code, we ask that your program’s last line of output be AMEX\n or MASTERCARD\n

or VISA\n or INVALID\n , nothing more, nothing less, and that main always return 0 .

For simplicity, you may assume that the user’s input will be entirely numeric (i.e., devoid

of hyphens, as might be printed on an actual card). But do not assume that the user’s

input will fit in an int ! Best to use GetLongLong from CS50’s library to get users' input.

(Why?)

Problem Set 1: C

17

Of course, to use GetLongLong , you’ll need to tell clang about CS50’s library. Be

sure to put

#include <cs50.h>

toward the top of credit.c . And be sure to compile your code with a command like

the below.

clang -o credit credit.c -lcs50

Note that -lcs50 must come at this command’s end because of how clang works.

Incidentally, recall that make can invoke clang for you and provide that flag for you,

as via the command below.

make credit

Assuming your program compiled without errors (or, ideally, warnings) via either

command, you can run your program with the command below.

./credit

Consider the below representative of how your own program should behave when passed

a valid credit card number (sans hyphens), wherein underlined text represents some user’s

input.

jharvard@appliance (~/Dropbox/hacker1): ./credit

Number: 378282246310005

AMEX

Of course, GetLongLong itself will reject hyphens (and more) anyway:

jharvard@appliance (~/Dropbox/hacker1): ./credit

Number: 3782-822-463-10005

Retry: foo

Retry: 378282246310005

Problem Set 1: C

18

AMEX

But it’s up to you to catch inputs that are not credit card numbers (e.g., Lauren’s phone

number), even if numeric:

jharvard@appliance (~/Dropbox/hacker1): ./credit

Number: 7722574501

INVALID

Test out your program with a whole bunch of inputs, both valid and invalid. (We certainly

will!) Here are a few card numbers that PayPal recommends for testing:

https://www.paypalobjects.com/en_US/vhelp/paypalmanager_help/

credit_card_numbers.htm

Google (or perhaps a roommate’s wallet) should turn up more. (If your roommate asks

what you’re doing, don’t mention us.) If your program behaves incorrectly on some inputs

(or doesn’t compile at all), time to debug!

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2014.fall.hacker1.credit credit.c

And if you’d like to play with the staff’s own implementation of credit in the appliance,

you may execute the below.

~cs50/hacker1/credit

Hello again, C

Before forging ahead, you might want to review some of the examples that we looked at

in Week 1’s lectures and take a look at a few more, the "source code" for which can be

found at https://cs50.harvard.edu/lectures/1. Allow me to take you on a tour, though feel

free to forge ahead on your own if you’d prefer. Not to worry if your appliance also looks

a bit different from mine.

https://www.paypalobjects.com/en_US/vhelp/paypalmanager_help/credit_card_numbers.htm
https://www.paypalobjects.com/en_US/vhelp/paypalmanager_help/credit_card_numbers.htm
https://cs50.harvard.edu/lectures/1

Problem Set 1: C

19

http://www.youtube.com/watch?

v=bQnyxpf0vk0&list=PLhQjrBD2T380JCGC3qD3nGpqt8iIjx2fV

Itsa Mario

Toward the beginning of World 1-1 in Nintendo’s Super Mario Brothers, Mario must hop

over two "half-pyramids" of blocks as he heads toward a flag pole. Below is a screenshot.

Write, in a file called mario.c in your ~/Dropbox/hacker1 directory, a program that

recreates these half-pyramids using hashes (#) for blocks. However, to make things more

interesting, first prompt the user for the half-pyramids' heights, a non-negative integer no

greater than 23 . (The height of the half-pyramids pictured above happens to be 4 , the

width of each half-pyramid 4 , with an a gap of size 2 separating them.) Then, generate

(with the help of printf and one or more loops) the desired half-pyramids. Take care

to left-align the bottom-left corner of the left-hand half-pyramid, as in the sample output

below, wherein boldfaced text represents some user’s input.

jharvard@appliance (~/Dropbox/hacker1): ./mario

Height: 4

 # #

 ## ##

 ### ###

####

No need to generate the bricks, cloud, numbers, or text in the sky or Mario himself. Just

the half-pyramids! And be sure that main returns 0 .

http://www.youtube.com/watch?v=bQnyxpf0vk0&list=PLhQjrBD2T380JCGC3qD3nGpqt8iIjx2fV
http://www.youtube.com/watch?v=bQnyxpf0vk0&list=PLhQjrBD2T380JCGC3qD3nGpqt8iIjx2fV

Problem Set 1: C

20

We leave it to you to determine how to compile and run this particular program!

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 2014.fall.hacker1.mario mario.c

And if you’d like to play with the staff’s own implementation of mario in the appliance,

you may execute the below.

~cs50/hacker1/mario

	Problem Set 1: C
	Table of Contents
	Objectives
	Recommended Reading
	diff pset1 hacker1
	Academic Honesty
	Reasonable
	Not Reasonable

	Getting Started
	Installing
	Updating
	Dropboxing
	File Manager
	gedit

	Hello, C
	CS50 Check
	CS50 Style
	Shorts
	Bad Credit
	Hello again, C
	Itsa Mario

