
1

Problem Set 7: C$50 Finance

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ....................................................................................................................... 2

Recommended Reading ................................................................................................. 2

Academic Honesty .........................................................................................................  2

Reasonable .............................................................................................................  2

Not Reasonable ......................................................................................................  3

Getting Ready ................................................................................................................  4

Getting Started ...............................................................................................................  5

Yahoo! ..........................................................................................................................  11

Walkthrough .................................................................................................................  13

index ...................................................................................................................... 13

portfolio .................................................................................................................. 14

config ..................................................................................................................... 14

functions ................................................................................................................  14

header, footer ........................................................................................................ 15

constants ...............................................................................................................  16

login ....................................................................................................................... 16

styles .....................................................................................................................  17

users ...................................................................................................................... 18

What To Do .................................................................................................................. 19

register ..................................................................................................................  19

quote .....................................................................................................................  23

portfolio .................................................................................................................. 23

sell .........................................................................................................................  28

buy ......................................................................................................................... 29

history .................................................................................................................... 30

index ...................................................................................................................... 31

extra feature ..........................................................................................................  31

Sanity Checks ..............................................................................................................  32

How to Submit .............................................................................................................  32



Problem Set 7: C$50 Finance

2

Step 1 of 2 ............................................................................................................ 32

Step 2 of 2 ............................................................................................................ 33

Objectives

• Introduce you to HTML, CSS, PHP, and SQL.

• Teach you how to teach yourself new languages.

Recommended Reading

• http://diveintohtml5.info/

• http://php.net/manual/en/langref.php

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on the

course’s final project is permitted to the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

http://diveintohtml5.info/
http://php.net/manual/en/langref.php


Problem Set 7: C$50 Finance

3

• Helping a classmate identify a bug in his or her code at Office Hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution in CS50 Vault to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.



Problem Set 7: C$50 Finance

4

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Getting Ready

Beyond introducing you to web programming, the overarching goal of this problem set is

to teach you—nay, empower you—to teach yourself new languages so that you can stand

on your own after term’s end. We’ll guide you through each, but if you nonetheless find

yourself Googling and asking lots of questions of classmates and staff, rest assured you’re

doing it right!

First, join Daven for a tour of HTML, the language in which web pages are written. Don’t

miss the bloopers at the end!

https://www.youtube.com/watch?v=dM5V1epAbSs

Next, consider reviewing some of these examples from Week 7.

https://www.youtube.com/watch?v=1TgTA4o_AM8

Now join Joseph for a tour of CSS, the language with which web pages can be stylized.

https://www.youtube.com/watch?v=kg0ZOmUREwc

And consider reviewing some of these examples from Week 7.

https://www.youtube.com/watch?v=TKZlfZDF8Y4

https://www.youtube.com/watch?v=dM5V1epAbSs
https://www.youtube.com/watch?v=1TgTA4o_AM8
https://www.youtube.com/watch?v=kg0ZOmUREwc
https://www.youtube.com/watch?v=TKZlfZDF8Y4


Problem Set 7: C$50 Finance

5

You are now a web programmer! Okay, not quite. Neither HTML nor CSS are programming

languages, but PHP is. Here’s Tommy with a look at PHP. You’ll find that its syntax is

fairly similar to C’s!

https://www.youtube.com/watch?v=1YF8yIJE8mM

Now let’s look at a common "design pattern" for websites called MVC (Model-View-

Controller) that we’ll ultimately use for this problem set. Take another look at mvc-0

through mvc-5 from Week 7.

https://www.youtube.com/watch?v=3Jy0OIaHviI

Finally, let’s hear about SQL (Structured Query Language). Here’s Christopher and

cupcakes.

https://www.youtube.com/watch?v=G58ujNjWEJY

Phew, bit of a fire hydrant, no? Not to worry, some fun and more comfort await! Let’s get

you started.

Getting Started

Start up your appliance and, upon reaching John Harvard’s desktop, open a terminal

window and execute

update50

to ensure that your appliance is up-to-date!

Like Problem Set 6, this problem set comes with some distribution code that you’ll need

to download before getting started. Go ahead and execute

cd ~/vhosts

in order to navigate to your ~/vhosts  directory. Then execute

wget http://cdn.cs50.net/2014/fall/psets/7/pset7/pset7.zip

in order to download a ZIP (i.e., compressed version) of this problem set’s distro. If you

then execute

https://www.youtube.com/watch?v=1YF8yIJE8mM
https://www.youtube.com/watch?v=3Jy0OIaHviI
https://www.youtube.com/watch?v=G58ujNjWEJY


Problem Set 7: C$50 Finance

6

ls

you should see that you now have a file called pset7.zip  in your ~/vhosts  directory.

Unzip it by executing the below.

unzip pset7.zip

If you again execute

ls

you should see that you now also have a directory called pset7 . You’re now welcome

to delete the ZIP file with the below.

rm -f pset7.zip

If you next execute

cd pset7

followed by

ls

you should see that pset7  contains three subdirectories: includes , public , and

templates . But more on those soon.

Next, ensure a few directories are world-executable by executing

chmod a+x ~

chmod a+x ~/vhosts

chmod a+x ~/vhosts/pset7

chmod a+x ~/vhosts/pset7/public

so that the appliance’s web server (and you, from a browser) will be able to access your

work. Then, navigate your way to ~/vhosts/pset7/public  by executing the below.



Problem Set 7: C$50 Finance

7

cd ~/vhosts/pset7/public

If you execute

ls

you should see that public  contains four subdirectories and three files. Ensure that the

former are word-executable by executing the below.

chmod a+x css fonts img js

Finally, ensure that the files within those directories are world-readable by executing the

below.

chmod a+r css/* fonts/* img/* js/*

If unfamiliar, *  is a "wildcard character," so css/* , for instance, simply means "all files

within the css  directory."

For security’s sake, don’t make ~/vhosts/pset7/includes  or ~/vhosts/pset7/

templates  world-executable (or their contents world-readable), as they shouldn’t be

accessible to the whole world (only to your PHP code, as you’ll soon see).

Even though your code for this problem set will live in ~/vhosts/pset7 , let’s ensure

that it’s nonetheless backed up via Dropbox, assuming you set up Dropbox inside of the

appliance. In a terminal window, execute

ln -s ~/vhosts/pset7 ~/Dropbox

in order to create a "symbolic link" (i.e., alias or shortcut) to your ~/vhosts/pset7

directory within your ~/Dropbox  directory so that Dropbox knows to start backing it up.

So why did we put pset7  inside of a directory called vhosts ? Well, the appliance is

configured to serve "virtual hosts" (i.e., websites) out of the latter. Specifically, if you visit,

say, http://pset7/ using Chrome inside of the appliance, the appliance is configured to

http://pset7/


Problem Set 7: C$50 Finance

8

look in ~/vhosts/pset7/public  for that website’s web-accessible files. But for that

to work, we also need to associate the appliance’s own IP address with pset7  so that it

"resolves" via DNS to it. Rather than set up a whole DNS server to do that, we can actually

edit a file called hosts  in a directory called etc . Let’s do that.

In a terminal window, execute

sudo gedit /etc/hosts

in order to run gedit  as the appliance’s "superuser" (aka "root") so that you can edit

what’s otherwise a read-only file. Carefully add this line at the bottom of that file, which will

associate pset7  with the appliance’s "loopback" address (which won’t ever change):

127.0.0.1 pset7

Then save the file and quit gedit . Then enjoy some xkcd1.

1  http://xkcd.com/149/

http://xkcd.com/149/
http://xkcd.com/149/


Problem Set 7: C$50 Finance

9

Alright, time for a test! Open up Chrome inside of the appliance and visit http://pset7/.

You should find yourself redirected to C$50 Finance’s login page! (If you instead see

Forbidden, odds are you missed a step earlier; best to try all those chmod steps again.)

If you try logging into C$50 Finance with a username of, oh, skroob and a password

of 12345, you should encounter an error about an Unknown database. That’s simply

because you haven’t created it yet! Let’s create it.

Head to http://pset7/phpmyadmin using Chrome inside of the appliance to access

phpMyAdmin, a Web-based tool (that happens to be written in PHP) with which you

can manage MySQL databases. (MySQL is a free, open-source database that CS50,

Facebook, and lots of other sites use.) Log in as John Harvard if prompted (with a

username of jharvard and a password of crimson). You should then find yourself at

phpMyAdmin’s main page.

In a separate tab (again using Chrome inside of the appliance), visit http://

cdn.cs50.net/2014/fall/psets/7/pset7/pset7.sql?download in order to download a file called

pset7.sql . Once downloaded, open the file in gedit , as by clicking its name in

Chrome’s bottom-left corner or by selecting File > Open… in gedit  and then navigating

your way to Downloads. You should ultimately see a whole bunch of SQL (i.e., database

queries) within pset7.sql . Highlight it all, then select Edit > Copy (or hit ctrl-c), then

return to phpMyAdmin. Click phpMyAdmin’s SQL tab, and paste everything you copied into

that page’s big text box (which is below Run SQL query/queries on server "localhost").

Skim what you just pasted to get a sense of the commands you’re about to execute, then

click Go. You should then see a greenish banner indicating success. If you instead see

Table 'phpmyadmin.pma_table_uiprefs' doesn’t exist

open a terminal window and run

sudo dpkg-reconfigure -f noninteractive phpmyadmin

sudo service apache2 restart

Then try pasting and running those SQL queries again. In phpMyAdmin’s top-left corner,

you should now see link to a database called pset7, beneath which is a link to a table

called users. (Though the latest version of phpMyAdmin is a bit buggy, though, so you

might need to reload the page first.) But more on those later.

http://pset7/
http://pset7/phpmyadmin
http://cdn.cs50.net/2014/fall/psets/7/pset7/pset7.sql?download
http://cdn.cs50.net/2014/fall/psets/7/pset7/pset7.sql?download


Problem Set 7: C$50 Finance

10

Return to http://pset7/ using Chrome inside of the appliance and reload that page. Then

try to log in with a username of skroob and a password of 12345. This time, you should

see some construction.

Okay, time for a heads-up. Anytime you create a new file or directory in ~/vhosts/

pset7  or some subdirectory therein for this problem set, you’ll want to set its permissions

with chmod . Thus far, we’ve relied on a+r  and a+x , but let’s empower you with more

precise control over permissions.

Henceforth, for any PHP file, file, that you create, execute

chmod 600 file

so that it’s accessible only by you (and the appliance’s webserver). After all, we don’t want

visitors to see the contents of PHP files; rather, we want them to see the output of PHP

files once executed (or, rather, interpreted) by the appliance’s web server.

For any non-PHP file, file, that you create (or upload), execute

chmod 644 file

so that it’s accessible via a browser (if that’s indeed your intention).

And for any directory, directory, that you create, execute

chmod 711 directory

so that its contents are accessible via a browser (if that’s indeed your intention).

What’s with all these numbers we’re having you type? Well, 600  happens to mean

rw------- , and so all PHP files are made readable and writable only by you; 644

happens to mean rw-r—r-- , and so all non-PHP files are to be readable and writable

by you and just readable by everyone else; and 711  happens to mean rwx—x—x , and

so all directories are to be readable, writable, and executable by you and just executable

by everyone else. Wait a minute, don’t we want everyone to be able to read (i.e., interpret)

your PHP files? Nope! For security reasons, PHP-based web pages are interpreted "as

http://pset7/


Problem Set 7: C$50 Finance

11

you" (i.e., under John Harvard’s username) in the appliance. For the curious, we’re using

suPHP2 with Apache3.

Okay, still, what’s with all those numbers? Well, think of rw-r—r--  as representing three

triples of bits, the first triple of which, to be clear, is rw- . Imagine that -  represents

0 , whereas r , w , and x  represent 1 . And, so, this same triple ( rw- ) is just 110  in

binary, or 6  in decimal! The other two triples, r--  and r-- , then, are just 100  and

100  in binary, or 4  and 4  in decimal! How, then, to express a pattern like rw-r—r--

with numbers? Why, with 644 .

Actually, this is a bit of a white lie. Because you can represent only eight possible values

with three bits, these numbers ( 6 , 4 , and 4 ) are not actually decimal digits but "octal."

So you can now tell your friends that you speak not only binary, decimal, and hexadecimal,

but octal as well.

Yahoo!

If you’re not quite sure what it means to buy and sell stocks (i.e., shares of a company),

surf on over to http://www.investopedia.com/university/stocks/ for a tutorial.

You’re about to implement C$50 Finance, a Web-based tool with which you can manage

portfolios of stocks. Not only will this tool allow you to check real stocks' actual prices and

portfolios' values, it will also let you buy (okay, "buy") and sell (fine, "sell") stocks! Per

Yahoo’s fine print, "Quotes delayed [by a few minutes], except where indicated otherwise."

Just the other day, I heard about this great "penny stock," whose symbol (ironically) is

FREE!

Let’s get in on this opportunity now. Head on over to Yahoo! Finance at http://

finance.yahoo.com/. Type the symbol for FreeSeas Inc., FREE, into the text field in that

page’s top-left corner and click Get Quotes. Odds are you’ll see a table like the below.

2  http://www.suphp.org/
3  http://httpd.apache.org/

http://www.suphp.org/
http://httpd.apache.org/
http://www.investopedia.com/university/stocks/
http://finance.yahoo.com/
http://finance.yahoo.com/
http://www.suphp.org/
http://httpd.apache.org/


Problem Set 7: C$50 Finance

12

Wow, only $0.16 per share! That must be a good thing. Anyhow, scroll down to the page’s

bottom, and you should see a toolbox like the below.

Looks like Yahoo lets you download all that data (albeit delayed). Go ahead and click

Download Data to download a file in CSV format (i.e., as comma-separated values). Open

the file in Excel or any text editor (e.g., gedit ), and you should see a "row" of values, all

excerpted from that table. It turns out that the link you just clicked led to the URL below.

http://download.finance.yahoo.com/d/quotes.csv?s=FREE&f=sl1d1t1c1ohgv&e=.csv

Notice how FreeSeas' symbol is embedded in this URL (as the value of the HTTP

parameter called s ); that’s how Yahoo knows whose data to return. Notice also the value

of the HTTP parameter called f ; it’s a bit cryptic (and officially undocumented), but the

value of that parameter tells Yahoo which fields of data to return to you. Unfortunately,

http://download.finance.yahoo.com/d/quotes.csv?s=FREE&f=sl1d1t1c1ohgv&e=.csv


Problem Set 7: C$50 Finance

13

Yahoo sometimes returns prices in currencies other than US dollars (without telling you

which), but we’ll just assume everything’s in US dollars for simplicity.

It’s worth noting that a lot of websites that integrate data from other websites do so via

"screen scraping," a process that requires writing programs that parse (or, really, search)

HTML for data of interest (e.g., air fares, stock prices, etc.). Writing a screen scraper for

a site tends to be a nightmare, though, because a site’s markup is often a mess, and if

the site changes the format of its pages overnight, you need to re-write your scraper. (See

https://manual.cs50.net/scraping/ if curious as to how it can be done nonetheless.)

Thankfully, because Yahoo provides data in CSV, C$50 Finance will avoid screen scraping

altogether by downloading (effectively pretending to be a browser) and parsing CSV files

instead. Even more thankfully, we’ve written that code for you!

In fact, let’s turn our attention to the code you’ve been given.

Walkthrough

index

Navigate your way to ~/vhosts/pset7/public  and open up index.php  with

gedit . Know that index.php  is the file that’s loaded by default when you visit a URL

like http://pset7/. Well, it turns out there’s not much PHP code in this file. And there isn’t any

HTML at all. Rather, index.php  "requires" config.php  (which is in a directory called

includes  in index.php 's parent directory). And index.php  then calls render  (a

function implemented in a file called functions.php  that can also be found inside of

includes ) in order to render (i.e., output) a template called portfolio.php  (which

is in a directory called templates  in `index.php’s parent directory). Phew, that was a

mouthful.

It turns out that index.php  is considered a "controller," whereby its purpose in life is to

control the behavior of your website when a user visits http://pset7/ (or, equivalently, http://

pset7/index.php). Eventually, you’ll need to add some more PHP code to this file in order

to pass more than just title to render. But for now, let’s take a look at portfolio.php ,

the template that this controller ultimately renders.

https://manual.cs50.net/scraping/
http://pset7/
http://pset7/
http://pset7/index.php
http://pset7/index.php


Problem Set 7: C$50 Finance

14

portfolio

Navigate your way to ~/vhosts/pset7/templates  and open up portfolio.php

with gedit . Ah, there’s some HTML. Of course, it’s not very interesting HTML, but it does

explain why your website is "under construction," thanks to the GIF referenced therein.

config

Now navigate your way to ~/vhosts/pset7/includes  and open up config.php

with gedit . Recall that config.php  was required by index.php . Notice how

config.php  first enables display of all errors (and warnings and notices, which are

less severe errors) so that you’re aware of any syntactical mistakes (and more) in your

code. Notice, too, that config.php  itself requires two other files: constants.php

and functions.php . Next, config.php  calls session_start  in order to enable

$_SESSION , a "superglobal" variable via which we’ll remember that a user is logged

in. (Even though HTTP is a "stateless" protocol, whereby browsers are supposed to

disconnect from servers as soon as they’re done downloading pages, "cookies" allow

browsers to remind servers who they or, really, you are on subsequent requests for

content. PHP uses "session cookies" to provide you with $_SESSION , an associative

array in which you can store any data to which you’d like to have access for the duration

of some user’s visit. The moment a user ends his or her "session" (i.e., visit) by quitting

his or her browser, the contents of $_SESSION  are lost for that user specifically because

the next time that user visits, he or she will be assigned a new cookie!) Meanwhile,

config.php  takes care to redirect the user to login.php  anytime he or she visits

some page other than login.php , logout.php , and register.php , assuming

$_SESSION["id"]  isn’t yet set. In other words, config.php  requires users to log in

if they aren’t logged in already (and if they aren’t already at one of those three pages).

functions

Okay, now open up functions.php  with gedit . Interesting, it looks like

functions.php  requires constants.php . More on that file, though, in a moment.

It looks like functions.php  also defines a bunch of functions, the first of which is

apologize , which you can call anytime you need to apologize to the user (because

they made some mistake). Defined next is dump , which you’re welcome to call anytime

you want to see the contents (perhaps recursively) of some variable while developing



Problem Set 7: C$50 Finance

15

your site. That function is only for diagnostic purposes, though. Be sure to remove all

calls thereto before submitting your work. Next in the file is logout , a function that logs

users out by destroying their sessions. Thereafter is lookup , a function that queries

Yahoo Finance for stocks' prices and more. More on that, though, in a bit. Up next is

query , a function that executes a SQL query and then returns the result set’s rows, if

any. Below it is redirect , a function that allows you to redirect users from one URL

to another. Last in the file is render , the function that index.php  called in order to

render portfolio.php . The function then "extracts" those values into the local scope

(whereby a key of "foo"  with a value of "bar"  in $values  becomes a local variable

called $foo  with a value of "bar" ). And it then requires header.php  followed by

$template  followed by footer.php , effectively outputting all three.

header, footer

In fact, navigate your way back to ~/vhosts/pset7/templates  and open up

header.php  and footer.php  in gedit . Ah, even more HTML! Thanks to render,

those files' contents will be included at the top and bottom, respectively, of each of your

pages. As a result, each of your pages will have access to Twitter’s Bootstrap library4, per

the link and script tags therein. And each page will have at least four div  elements, three

of which have unique IDs ( top , middle , and bottom ), if only to make styling them

with CSS easier. Even more interestingly, though, notice how header.php  conditionally

outputs $title , if it is set. Remember how index.php  contained the below line of

code?

render("portfolio.php", ["title" => "Portfolio"]);

Well, because render  calls extract  on that second argument, an array, before

requiring header.php , header.php  ends up having access to a variable called

$title . Neat, eh? You can pass even more values into a template simply by separating

such key/value pairs with a comma, as in the below.

render("portfolio.php", ["cash" => 10000.00, "title" => "Portfolio"]);

4  http://getbootstrap.com/

http://getbootstrap.com/
http://getbootstrap.com/


Problem Set 7: C$50 Finance

16

constants

Okay, now open up constants.php  in ~/vhosts/pset7/includes  (which, recall,

config.php  required). Suffice it to say, this file defines a bunch of constants, but you

shouldn’t need to change any of them.

login

Navigate your way back to ~/vhosts/pset7/public  and open up login.php ,

another controller, with gedit . This controller’s a bit more involved than index.php

as it handles the authentication of users. Read through its lines carefully, taking note of

how it how it queries the appliance’s MySQL database using that query  function from

functions.php . That function (which we wrote) essentially simplifies use of PDO5

(PHP Data Objects), a library with which you can query MySQL (and other) databases.

Per its definition in functions.php , the function accepts one or more arguments: a

string of SQL followed by a comma-separated list of zero or more parameters that can be

plugged into that string, not unlike printf . Whereas printf  uses %d , %s , and the

like for placeholders, though, query  simply relies on question marks, no matter the type

of value. And so the effect of

query("SELECT * FROM users WHERE username = ?", $_POST["username"]);

in login.php  is to replace ?  with whatever username has been submitted (via POST)

via an HTML form. (The function also ensures that any such placeholders' values are

properly escaped so that your code is not vulnerable to "SQL injection attacks.") For

instance, suppose that President Skroob tries to log into C$50 Finance by inputting his

username and password. That line of code will ultimately execute the SQL statement

below.

SELECT * FROM users WHERE username='skroob'

Beware, though. PHP is weakly (i.e., loosely) typed, and so functions like query can

actually return different types. Indeed, even though query usually returns an array of rows

(thanks to its invocation of PDO’s fetchAll ), it can also return false  in case of errors.

5  http://www.php.net/manual/en/class.pdo.php

http://www.php.net/manual/en/class.pdo.php
http://www.php.net/manual/en/class.pdo.php


Problem Set 7: C$50 Finance

17

But, unlike SELECT s, some SQL queries (e.g., DELETE s, UPDATE s, and INSERT s)

don’t actually return rows, and so the array that query  returns might sometimes be

empty. When checking the return value of query  for false , then, take care not to use

== , because it turns out than an empty array is ==  to false  because of implicit casting.

But an empty array does not necessarily signify an error, only false  does! Use, then,

PHP’s ===  (or !== ) operator when checking return values for false , which compares

its operands' values and types (not just their values), as in the below.

$result = query("INSERT INTO users (username, hash, cash) VALUES(?, ?,

 10000.00)", $_POST["username"], crypt($_POST["password"]));

if ($result === false)

{

    // the INSERT failed, presumably because username already existed

}

See http://php.net/manual/en/language.operators.comparison.php for more details.

Anyhow, notice too that login.php  "remembers" that a user is logged in by storing his or

her unique ID inside of $_SESSION . As before, this controller does not contain any HTML.

Rather, it calls apologize  or renders login_form.php  as needed. In fact, open up

login_form.php  in ~/vhosts/pset7/templates  with gedit . Most of that file is

HTML that’s stylized via some of Bootstrap’s CSS classes, but notice how the HTML form

therein POSTs to login.php . Just for good measure, take a peek at apology.php

while you’re in that directory as well. And also take a peek at logout.php  back in ~/

vhosts/pset7/public  to see how it logs out a user.

styles

Alright, now navigate your way to ~/vhosts/pset7/public/css  and open up

styles.css  with gedit . Notice how this file already has a few "selectors" so that you

don’t have to include style attributes the elements matched by those selectors. No need

to master CSS for this problem set, but do know that you should not have more than one

div  element per page whose id  attribute has a value of top , more than one div

element per page whose id  attribute has a value of middle , or more than one div

element per page whose id  attribute has a value of bottom ; an id  must be unique.

In any case, you are welcome to modify styles.css  as you see fit.

http://php.net/manual/en/language.operators.comparison.php


Problem Set 7: C$50 Finance

18

You’re also welcome to poke around ~/vhosts/pset7/public/js , which contains

some JavaScript files. But no need to use or write any JavaScript for this problem set.

Those files are just there in case you’d like to experiment.

Phew, that was a lot. Help yourself to a snack.

users

Alright, let’s talk about that database you created earlier (by executing the statements

in pset7.sql  in phpMyAdmin’s SQL tab). Head back to http://pset7/phpmyadmin/

using Chrome inside of the appliance to access phpMyAdmin. Log in as John Harvard if

prompted (with a username of jharvard and a password of crimson). You should then

find yourself at phpMyAdmin’s main page, in the top-left corner of which is a database

called pset7 that has (if you click the +) a table called users. Click the name of that table

to see its contents. Ah, some familiar folks. In fact, there’s President Skroob’s username

and a hash of his password (which is the same as the combination to his luggage)!

Now click the tab labeled Structure. Ah, some familiar fields. Recall that login.php

generates queries like the below.

SELECT id FROM users WHERE username='skroob'

As phpMyAdmin makes clear, this table called users contains three fields: id  (the type

of which is an INT  that’s UNSIGNED ) along with username  and hash  (each of whose

types is VARCHAR ). It appears that none of these fields is allowed to be NULL , and the

maximum length for each of each of username  and hash  is 255 . A neat feature of id ,

meanwhile, is that it will AUTO_INCREMENT : when inserting a new user into the table,

you needn’t specify a value for id ; the user will be assigned the next available INT .

Finally, if you click Indexes (above Information), you’ll see that this table’s PRIMARY

key is id , the implication of which is that (as expected) no two users can share the same

user ID. Recall that a primary key is a field with no duplicates (i.e., that is guaranteed to

identify rows uniquely). Of course, username  should also be unique across users, and

so we have also defined it to be so (per the additional Yes under Unique). To be sure,

we could have defined username as this table’s primary key. But, for efficiency’s sake, the

more conventional approach is to use an INT  like id . Incidentally, these fields are called

"indexes" because, for primary keys and otherwise unique fields, databases tend to build

"indexes," data structures that enable them to find rows quickly by way of those fields.

http://pset7/phpmyadmin/


Problem Set 7: C$50 Finance

19

Make sense?

Okay, let’s give each of your users some cash. Assuming you’re still on phpMyAdmin’s

Structure tab, you should see a form with which you can add new columns. Click the radio

button immediately to the left of After, select hash from the drop-down menu, as in the

below, then click Go.

Via the form that appears, define a field called cash of type DECIMAL  with a length of

65,4 , with a default value of 0.0000 , and with an attribute of UNSIGNED , as in the

below, then click Save.

If you pull up the documentation for MySQL at http://dev.mysql.com/doc/refman/5.5/en/

numeric-types.html, you’ll see that the DECIMAL  data type is used to "store exact numeric

data values." A length of 65,4  for a DECIMAL  means that values for cash  can have

no more than 65 digits in total, 4 of which can be to the right of the decimal point. (Ooo,

fractions of pennies. Sounds like Office Space.)

Okay, return to the tab labeled Browse and give everyone $10,000.00 manually. (In

theory, we could have defined cash  as having a default value of 10000.000 , but, in

general, best to put such settings in code, not your database, so that they’re easier to

change.) The easiest way is to click Check All, then click Change to the right of the pencil

icon. On the page that appears, change 0.0000  to 10000.0000  for each of your users,

then click Go. Won’t they be happy!

What To Do

register

It’s now time to code! Let’s empower new users to register.

http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html
http://dev.mysql.com/doc/refman/5.5/en/numeric-types.html


Problem Set 7: C$50 Finance

20

Return to a terminal window, navigate your way to ~/vhosts/pset7/templates  and

execute the below. (You are welcome, particularly if among those more comfortable, to

stray from these filename conventions and structure your site as you see fit, so long as

your implementation adheres to all other requirements.)

cp login_form.php register_form.php

Then open up register_form.php  with gedit  and change the value of form’s

action  attribute from login.php  to register.php . Next add an additional field of

type password  to the HTML form called confirmation  so that users are prompted to

input their choice of passwords twice (to discourage mistakes). Finally, change the button’s

text from Log In  to Register  and change

or <a href="register.php">register</a> for an account

to

or <a href="login.php">log in</a>

so that users can navigate away from this page if they already have accounts.

Then, using gedit , create a new file called register.php  with the contents below,

taking care to save it in ~/vhosts/pset7/public .



Problem Set 7: C$50 Finance

21

<?php

    // configuration

    require("../includes/config.php");

    // if user reached page via GET (as by clicking a link or via redirect)

    if ($_SERVER["REQUEST_METHOD"] == "GET")

    {

        // else render form

        render("register_form.php", ["title" => "Register"]);

    }

    // else if user reached page via POST (as by submitting a form via POST)

    else if ($_SERVER["REQUEST_METHOD"] == "POST")

    {

        // TODO

    }

?>

Alright, let’s take a look at your work! Bring up http://pset7/login.php in Chrome inside

of the appliance and click that page’s link to register.php . You should then find

yourself at http://pset7/register.php. If anything appears awry, feel free to make tweaks

to register_form.php  or register.php . Just be sure to save your changes and

then reload the page in the browser.

Of course, register.php  doesn’t actually register users yet, so it’s time to tackle that

TODO ! Allow us to offer some hints.

• If $_POST["username"]  or $_POST["password"]  is empty or if

$_POST["password"]  does not equal $_POST["confirmation"] , you’ll want

to inform registrants of their error.

• To insert a new user into your database, you might want to call

query("INSERT INTO users (username, hash, cash) VALUES(?, ?, 10000.00)",

 $_POST["username"], crypt($_POST["password"]));

though we leave it to you to decide how much cash your code should give to new users.

http://pset7/login.php
http://pset7/register.php


Problem Set 7: C$50 Finance

22

• Know that query  will return false  if your INSERT  fails (as can happen if, say,

username  already exists). Be sure to check for false with ===  and not == .

• If, though, your INSERT  succeeds, know that you can find out which id  was assigned

to that user with code like the below.

$rows = query("SELECT LAST_INSERT_ID() AS id");

$id = $rows[0]["id"];

• If registration succeeds, you might as well log the new user in (as by "remembering"

that id  in $_SESSION ), thereafter redirecting to index.php .

Here’s Zamyla with some additional hints:

https://www.youtube.com/watch?v=-b274yKl-4w

All done with register.php ? Ready to test? Head back to http://pset7/register.php

using Chrome inside of the appliance and try to register a new username. If you reach

index.php , odds are you done good! Confirm as much by returning to phpMyAdmin,

clicking once more that tab labeled Browse for the table called users . May that you see

your new user. If not, it’s time to debug!

Be sure, incidentally, that any HTML generated by register.php  is valid, as by

ctrl- or right-clicking on the page in Chrome, selecting View Page Source, highlighting

and copying the source code, and then pasting it into the W3C’s validator at http://

validator.w3.org/#validate_by_input and then clicking Check. Ultimately, the Result of

checking your page for validity via the W3C’s validator should be Passed or Tentatively

passed, in which case you should see a friendly green banner. Warnings are okay.

Errors (and big red banners) are not. Note that you won’t be able to "validate by URI" at

http://validator.w3.org/#validate_by_uri, since your appliance isn’t accessible on the public

Internet!

Do bear in mind as you proceed further that you are welcome to play with and learn from

the staff’s implementation of C$50 Finance at https://cs50.harvard.edu/finance.

In particular, you are welcome to register with as many (fake) usernames as you would like

in order to play. And you are welcome to view our pages' HTML and CSS (by viewing our

source using your browser) so that you might learn from or improve upon our own design.

If you wish, feel free to adopt our HTML and CSS as your own.

https://www.youtube.com/watch?v=-b274yKl-4w
http://pset7/register.php
http://validator.w3.org/#validate_by_input
http://validator.w3.org/#validate_by_input
http://validator.w3.org/#validate_by_uri
https://cs50.harvard.edu/finance


Problem Set 7: C$50 Finance

23

But do not feel that you need copy our design. In fact, for this problem set, you may modify

every one of the files we have given you to suit your own tastes as well as incorporate your

own images and more. In fact, may that your version of C$50 Finance be nicer than ours!

quote

Okay, now it’s time to empower users to look up quotes for individual stocks. Odds are

you’ll want to create a new controller called, say, quote.php  plus two new templates,

the first of which displays an HTML form via which a user can submit a stock’s symbol,

the second of which displays, minimally, a stock’s latest price (if passed, via render, an

appropriate value).

How to look up a stock’s latest price? Well, recall that function called lookup  in

functions.php . Odds are you’ll want to call it with code like the below.

$stock = lookup($_POST["symbol"]);

Assuming the value of $_POST["symbol"]  is a valid symbol for an actual stock,

lookup will return an associative array with three keys for that stock, namely its symbol ,

its name , and its price . Know that you can use PHP’s number_format  function

(somehow!) to format price to at least two decimal places but no more than four decimal

places. See http://php.net/manual/en/function.number-format.php for details.

Of course, if the user submits an invalid symbol (for which lookup returns false), be sure

to inform the user somehow. Be sure, too, that any HTML generated by your templates

is valid, per the W3C’s validator.

Here’s Zamyla again:

https://www.youtube.com/watch?v=l3OJRBGkU78

portfolio

And now it’s time to do a bit of design. At present, your database has no way of keeping

track of users' portfolios, only users themselves. (By "portfolio," we mean a collection of

stocks (i.e., shares of companies) that some user owns.) It doesn’t really make sense to

add additional fields to users itself in order to keep track of the stocks owned by users

(using, say, one field per company owned). After all, how many different stocks might a

http://php.net/manual/en/function.number-format.php
https://www.youtube.com/watch?v=l3OJRBGkU78


Problem Set 7: C$50 Finance

24

user own? Better to maintain that data in a new table altogether so that we do not impose

limits on users' portfolios or waste space with potentially unused fields.

Exactly what sort of information need we keep in this new table in order to "remember"

users' portfolios? Well, we probably want a field for users' IDs ( id ) so that we can cross-

reference holdings with entries in users . We probably want to keep track of stocks owned

by way of their symbols since those symbols are likely shorter (and thus more efficiently

stored) than stocks' actual names. Of course, you could also assign unique numeric IDs

to stocks and remember those instead of their symbols. But then you’d have to maintain

your own database of companies, built up over time based on data from, say, Yahoo. It’s

probably better (and it’s certainly simpler), then, to keep track of stocks simply by way of

their symbols. And we probably want to keep track of how many shares a user owns of

a particular stock. In other words, a table with three fields ( id , symbol , and shares )

sounds pretty good, but you’re welcome to proceed with a design of your own. Whatever

your decision, head back to phpMyAdmin and create this new table, naming it however

you see fit. To create a new table, click pset7 in phpMyAdmin’s top-left corner, and on

the screen that appears, input a name for your table and some number of columns below

Create table, then click Go. On the screen that appears next, define (in any order) each

of your fields.

If you decide to go with three fields (namely id , symbol , and shares ), realize that

id  should not be defined as a primary key in this table, else each user could own no

more than one company’s stock (since his or her id  could not appear in more than one

row). Realize, too, that you shouldn’t let some id  and some symbol  to appear together

in more than one row. Better to consolidate users' holdings by updating shares whenever

some user sells or buys more shares of some stock he or she already owns. A neat way

to impose this restriction while creating your table is to define a "joint primary key" by

selecting an Index of PRIMARY  for both id  and symbol . That way, INSERT  will fail

if you try to insert more than one row for some pair of id and symbol. We leave it to you,

though, to decide your fields' types. (If you include id  in this table, know that its type

should match that in users . But don’t specify AUTO_INCREMENT  for that field in this

new table, as you only want auto-incrementation when user IDs are created for new users.

And don’t call your table tbl .) When done defining your table, click Save!

Before we let users buy and sell stocks themselves, let’s give some shares to President

Skroob and friends at no charge. Click, in phpMyAdmin’s left-hand frame, the link to

users  and remind yourself of your current users' IDs. Then click, in phpMyAdmin’s left-



Problem Set 7: C$50 Finance

25

hand frame, the link to your new table (for users' portfolios), followed by the tab labeled

Insert. Via this interface, go ahead and "buy" some shares of some stocks on behalf of your

users by manually inserting rows into this table. (You may want to return to Yahoo! Finance

to look up some actual symbols.) No need to debit their cash  in users ; consider these

shares freebies.

Once you’ve bought your users some shares, let’s see what you did. Click the tab labeled

SQL and run a query like the below, where tbl  represents your new table’s name.

SELECT * FROM tbl WHERE id = 6

Assuming 6  is President Skroob’s user ID, that query should return all rows from tbl

that represent the president’s holdings. If the only fields in table are, say, id , symbol ,

and shares , then know that the above is actually equivalent to the below.

SELECT id, symbol, shares FROM tbl WHERE id = 6

If, meanwhile, you’d like to retrieve only President Skroob’s shares of FreeSeas, you might

like to try a query like the below.

SELECT shares FROM tbl WHERE id = 6 AND symbol = "FREE"

If you happened to buy President Skroob some shares of that company, the above should

return one row with one column, the number of shares. If you did not get buy any such

shares, the above will return an empty result set.

Incidentally, via this SQL tab, you could have inserted those "purchases" with INSERT

statements. But phpMyAdmin’s GUI saved you the trouble.

Alright, let’s put this knowledge to use. It’s time to let users peruse their portfolios! Overhaul

index.php  (a controller) and portfolio.php  (a template) in such a way that they

report each of the stocks in a user’s portfolio, including number of shares and current

price thereof, along with a user’s current cash balance. Needless to say, index.php

will need to invoke lookup  much like quote.php  did, though perhaps multiple times.

And know that a PHP script can certainly invoke query  multiple times, even though, thus

far, we’ve seen it used in a file no more than once. And you can certainly iterate over the



Problem Set 7: C$50 Finance

26

array it returns in a template (assuming you pass it in via render ). For instance, if your

goal is simply to display, say, President Skroob’s holdings, one per row in some HTML

table, you can generate rows with code like the below, where $positions  is an array

of associative arrays, each of which represents a position (i.e., a stock owned).

<table>

    <?php

        foreach ($positions as $position)

        {

            print("<tr>");

            print("<td>" . $position["symbol"] . "</td>");

            print("<td>" . $position["shares"] . "</td>");

            print("<td>" . $position["price"] . "</td>");

            print("</tr>");

        }

    ?>

</table>

Alternatively, you can avoid using the concatenation operator ( . ) via syntax like the

below:

<table>

    <?php

        foreach ($positions as $position)

        {

            print("<tr>");

            print("<td>{$position["symbol"]}</td>");

            print("<td>{$position["shares"]}</td>");

            print("<td>{$position["price"]}</td>");

            print("</tr>");

        }

    ?>

</table>

Note that, in the above version, we’ve surrounded the lines of HTML with double

quotes instead of single quotes so that the variables within ( $position["symbol"] ,



Problem Set 7: C$50 Finance

27

$position["shares"] , and $position["price"] ) are interpolated (i.e.,

substituted with their values) by PHP’s interpreter; variables between single quotes are

not interpolated. And we’ve also surrounded those same variables with curly braces so

that PHP realizes they’re variables; variables with simpler syntax (e.g., $foo ) do not

require the curly braces for interpolation. (It’s fine to use double quotes inside those curly

braces, even though we’ve also used double quotes to surround the entire argument to

print .) Anyhow, though commonly done, generating HTML via calls to print  isn’t

terribly elegant. An alternative approach, though still a bit inelegant, is code more like the

below.

<?php foreach ($positions as $position): ?>

    <tr>

        <td><?= $position["symbol"] ?></td>

        <td><?= $position["shares"] ?></td>

        <td><?= $position["price"] ?></td>

    </tr>

<?php endforeach ?>

Of course, before you can even pass $positions  to portfolio.php , you’ll need to

define it in index.php . Allow us to suggest code like the below, which combines names

and prices from lookup  with shares and symbols, as might be returned as $rows  from

query .

$positions = [];

foreach ($rows as $row)

{

    $stock = lookup($row["symbol"]);

    if ($stock !== false)

    {

        $positions[] = [

            "name" => $stock["name"],

            "price" => $stock["price"],

            "shares" => $row["shares"],

            "symbol" => $row["symbol"]

        ];

    }

}



Problem Set 7: C$50 Finance

28

Note that, with this code, we’re deliberately create a new array of associative arrays

( $positions ) rather than add names and prices to an existing array of associative

arrays ( $rows ). In the interests of good design, it’s generally best not to alter functions'

return values (like $rows  from query ).

Now, much like you can pass a page’s title to render, so can you pass these positions,

as with the below.

render("portfolio.php", ["positions" => $positions, "title" => "Portfolio"]);

Of course, you’ll also need to pass a user’s current cash balance from index.php  to

portfolio.php  via render  as well, but we leave it to you to figure out how.

To be clear, in the spirit of MVC, though, do take care not to call lookup  inside of that (or

any other) template; you should only call lookup  in controllers. Even though templates

(aka views) can contain PHP code, that code should only be used to print and/or iterate

over data that’s been passed in (as via render) from a controller.

As for what HTML to generate, look, as before, to https://cs50.harvard.edu/finance for

inspiration or hints. But do not feel obliged to mimic our design. Make this website your

own! Although any HTML and PHP code that you yourself write should be pretty-printed

(i.e., nicely indented), it’s okay if lines exceed 80 characters in length. HTML that you

generate dynamically (as via calls to print ), though, does not need to be pretty-printed.

As before, be sure to display stocks' prices and users' cash balances to at least two decimal

places but no more than four.

Incidentally, though we keep using President Skroob in examples, your code should work

for whichever user is logged in.

As always, be sure that the HTML generated by index.php  is valid.

Here’s Zamyla with some additional tips:

https://www.youtube.com/watch?v=ExR5lqe3ogc

sell

And now it is time to implement the ability to sell with a controller called, say, sell.php

and some number of templates. We leave the design of this feature to you. But know that

https://cs50.harvard.edu/finance
https://www.youtube.com/watch?v=ExR5lqe3ogc


Problem Set 7: C$50 Finance

29

you can delete rows from your table (on behalf of, say, President Skroob) with SQL like

the below.

DELETE FROM tbl WHERE id = 6 AND symbol = "FREE"

We leave it to you to infer exactly what that statement should do. Of course, you could

try the above out via phpMyAdmin’s SQL tab. Now what about the user’s cash balance?

Odds are, your user is going to want the proceeds of all sales. So selling a stock involves

updating not only your table for users' portfolios but users  as well. We leave it to you

to determine how to compute how much cash a user is owed upon sale of some stock.

But once you know that amount (say, $500), SQL like the below should take care of the

deposit (for, say, President Skroob).

UPDATE users SET cash = cash + 500 WHERE id = 6

Of course, if the database or web server happens to die between this DELETE  and

UPDATE , President Skroob might lose out on all of that cash. You need not worry about

such cases! It’s also possible, because of multithreading and, thus, race conditions,

that a clever president could trick your site into paying out more than once. You need

not worry about such cases either! Though, if you’re so very inclined, you can employ

SQL transactions (with InnoDB tables). See http://dev.mysql.com/doc/refman/5.5/en/sql-

syntax-transactions.html for reference.

It’s fine, for simplicity, to require that users sell all shares of some stock or none, rather

than only a few. Needless to say, try out your code by logging in as some user and selling

some stuff. You can always "buy" it back manually with phpMyAdmin.

As always, be sure that your HTML is valid!

And as always, here is Zamyla!

https://www.youtube.com/watch?v=OfMXp22SNq8

buy

Now it’s time to support actual buys. Implement the ability to buy, with a controller called,

say, buy.php  and some number of templates. (As before, you need not worry about

http://dev.mysql.com/doc/refman/5.5/en/sql-syntax-transactions.html
http://dev.mysql.com/doc/refman/5.5/en/sql-syntax-transactions.html
https://www.youtube.com/watch?v=OfMXp22SNq8


Problem Set 7: C$50 Finance

30

interruptions of service or race conditions.) The interface with which you provide a user is

entirely up to you, though, as before, feel free to look to https://www.cs50.net/finance for

inspiration or hints. Of course, you’ll need to ensure that a user cannot spend more cash

than he or she has on hand. And you’ll want to make sure that users can only buy whole

shares of stocks, not fractions thereof. For this latter requirement, know that a call like

preg_match("/^\d+$/", $_POST["shares"])

will return true  if and only if $_POST["shares"]  contains a non-negative integer,

thanks to its use of a regular expression. See http://www.php.net/preg_match for details.

Take care to apologize to the user if you must reject their input for any reason. In other

words, be sure to perform rigorous error-checking. (We leave to you to determine what

needs to be checked!)

When it comes time to store stocks' symbols in your database table, take care to store

them in uppercase (as is convention), no matter how they were inputted by users, so that

you don’t accidentally treat, say, free  and FREE  as different stocks. Don’t force users,

though, to input symbols in uppercase.

Incidentally, if you implemented your table for users' portfolios as we did ours (with that

joint primary key), know that SQL like the below (which, unfortunately, wraps onto two

lines) will insert a new row into table unless the specified pair of id  and symbol  already

exists in some row, in which case that row’s number of shares will simply be increased

(say, by 10 ).

INSERT INTO table (id, symbol, shares) VALUES(6, "FREE", 10) ON

 DUPLICATE KEY UPDATE shares = shares + VALUES(shares)

As always, be sure to bang on your code. And be sure that your HTML is valid!

Here’s Zamyla with some additional help:

https://www.youtube.com/watch?v=vWIKlxF1iog

history

Alright, so your users can now buy and sell stocks and even check their portfolio’s value.

But they have no way of viewing their history of transactions.

https://www.cs50.net/finance
http://www.php.net/preg_match
https://www.youtube.com/watch?v=vWIKlxF1iog


Problem Set 7: C$50 Finance

31

Enhance your implementations for buying and selling in such a way that you start logging

transactions, recording for each:

• Whether a stock was bought or sold.

• The symbol bought or sold.

• The number of shares bought or sold.

• The price of a share at the time of transaction.

• The date and time of the transaction.

Then, by way of a controller called, say, history.php  and some number of templates,

enable users to peruse their own history of transactions, formatted as you see fit. Be sure

that your HTML is valid!

Here’s Zamyla again:

https://www.youtube.com/watch?v=XuxJbwCdquk

index

Phew. Glance back at index.php  now and, if not there already, make that it

somehow links to, at least, buy.php , history.php , logout.php , quote.php ,

and sell.php  (or their equivalents) so that each is only one click away from a user’s

portfolio!

extra feature

And now the icing on the cake. Only one feature to go, but you get to choose. Implement

at least one (1) of the features below. You may interpret each of the below as you see fit;

we leave all design decisions to you. Be sure that your HTML is valid.

• Empower users (who’re already logged in) to change their passwords.

• Empower users who’ve forgotten their password to reset it (as by having them register

with an email address so that you can email them a link via which to do so).

• Email users "receipts" anytime they buy or sell stocks.

• Empower users to deposit additional funds.

https://www.youtube.com/watch?v=XuxJbwCdquk


Problem Set 7: C$50 Finance

32

Here’s Zamyla with a few final thoughts:

https://www.youtube.com/watch?v=7iPqmGgA2Os

Sanity Checks

Before you consider this problem set done, best to ask yourself these questions and then

go back and improve your code as needed! Do not consider the below an exhaustive list of

expectations, though, just some helpful reminders. The checkboxes that have come before

these represent the exhaustive list! To be clear, consider the questions below rhetorical.

No need to answer them in writing for us, since all of your answers should be "yes!"

• Is the HTML generated by all of your PHP files valid according to http://

validator.w3.org/?

• Do your pages detect and handle invalid inputs properly?

• Are you recording users' histories of transactions properly?

• Did you add one (1) additional feature of your own?

• Did you choose appropriate data types for your database tables' fields?

• Are you displaying any dollar amounts to at least two decimal places but no more than

four?

• Are you storing stocks' symbols in your table(s) in uppercase?

How to Submit

Step 1 of 2

When ready to submit, open up a Terminal window and "export" your MySQL database

(i.e., save it into a text file) by executing the commands below, inputting crimson when

prompted for a password. For security, you won’t see the password as you type it.

cd ~/vhosts/pset7

mysqldump -u jharvard -p pset7 > pset7.sql

If you type ls  thereafter, you should see that you have a new file called pset7.sql

in ~/vhosts/pset7 . (If you realize later that you need to make a change to your

https://www.youtube.com/watch?v=7iPqmGgA2Os
http://validator.w3.org/
http://validator.w3.org/


Problem Set 7: C$50 Finance

33

database and re-export it, you can delete pset7.sql  with rm pset7.sql , then re-

export as before.) Next create a ZIP (i.e., compressed) file containing your entire pset7

directory by executing the below. Incidentally, -r  means "recursive," which in this case

means to ZIP up everything inside of pset7 , including any subdirectories (or even

subsubdirectories!).

cd ~/vhosts

zip -r pset7.zip pset7/

If you type ls  thereafter, you should see that you have a new file called pset7.zip

in ~/vhosts . (If you realize later that you need to make a change to some file and re-

ZIP everything, you can delete the ZIP file you already made with rm pset7.zip , then

create a new ZIP file as before.) * Once done creating your ZIP file, open up Chrome inside

of the appliance (not on your own computer) and visit cs50.edx.org/submit6, logging in if

prompted. * Click Submit toward the window’s top-left corner. * Under Problem Set 7 on

the screen that appears, click Upload New Submission. * On the screen that appears,

click Add files…. A window entitled Open Files should appear. * Navigate your way

to pset7.zip , as by clicking jharvard, then double-clicking Dropbox. Once you find

pset7.zip , click it once to select it, then click Open. * Click Start upload to upload your

ZIP file to CS50’s servers. * On the screen that appears, you should see a window with No

File Selected. If you move your mouse toward the window’s lefthand side, you should see

a list of the files you uploaded. Click each to confirm the contents of each. (No need to click

any other buttons or icons.) If confident that you submitted the files you intended, consider

your source code submitted! If you’d like to re-submit different (or modified) files, simply

return to cs50.edx.org/submit7 and repeat these steps. You may re-submit as many times

as you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

• Head to http://cs50.edx.org/2015/psets/7/ where a short form awaits. Once you have

submitted that form (as well as your source code), you are done!

This was Problem Set 7.

6  http://cs50.edx.org/submit
7  http://cs50.edx.org/submit

http://cs50.edx.org/submit
http://cs50.edx.org/submit
http://cs50.edx.org/2015/psets/7/
http://cs50.edx.org/submit
http://cs50.edx.org/submit

	Problem Set 7: C$50 Finance
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Getting Ready
	Getting Started
	Yahoo!
	Walkthrough
	index
	portfolio
	config
	functions
	header, footer
	constants
	login
	styles
	users

	What To Do
	register
	quote
	portfolio
	sell
	buy
	history
	index
	extra feature

	Sanity Checks
	How to Submit
	Step 1 of 2
	Step 2 of 2


