Week 3
last time
help50
eprintf
debug50
string

Z a m y l a
string

Z a m y l a
<table>
<thead>
<tr>
<th>z</th>
<th>a</th>
<th>m</th>
<th>y</th>
<th>l</th>
<th>a</th>
<th>\0</th>
</tr>
</thead>
</table>
int main(void)
int main(int argc, string argv[])

this time
linear search
for each element in array
 if element you're looking for
 return true
return false
binary search
look at middle of sorted array
if element you're looking for
 return true
else if element is to left
 search left half of array
else if element is to right
 search right half of array
else
 return false
bubble sort
repeat until no swaps
 for i from 0 to n-2
 if i'th and i+1'th elements out of order
 swap them
selection sort
for i from 0 to n-1
find smallest element between i'th and n-1'th
swap smallest with i'th element
insertion sort
for i from 1 to n-1
 call 0'th through i-1'th elements the "sorted side"
 remove i'th element
 insert it into sorted side in order
running time
bubble sort
$(n - 1)$
\((n - 1) + (n - 2)\)
\((n - 1) + (n - 2) + \ldots + 1\)
\[(n - 1) + (n - 2) + \ldots + 1\]

\[n(n - 1)/2\]
\[(n - 1) + (n - 2) + \ldots + 1\]
\[= n(n - 1)/2\]
\[= (n^2 - n)/2\]
\[(n - 1) + (n - 2) + \ldots + 1\]
\[n(n - 1)/2\]
\[(n^2 - n)/2\]
\[n^2/2 - n/2\]
\[
n^2/2 - n/2
\]
\[\frac{n^2}{2} - \frac{n}{2} \]

\[1,000,000^2/2 - 1,000,000/2 \]
\[
\frac{n^2}{2} - \frac{n}{2}
\]
\[
1,000,000^2/2 - 1,000,000/2
\]
\[
500,000,000,000,000 - 500,000
\]
\[\left(\frac{n^2}{2} - \frac{n}{2} \right) \]

\[1,000,000^2/2 - 1,000,000/2 \]

\[500,000,000,000 - 500,000 \]

\[499,999,500,000 \]
\(\frac{n^2}{2} - \frac{n}{2} \)
$O(n^2)$

$O(n \log n)$

$O(n)$

$O(\log n)$

$O(1)$

...
$O(n^2)$

$O(n \log n)$

$O(n)$

$O(\log n)$

$O(1)$

\ldots
$O(n^2)$
$O(n \log n)$
$O(n)$
$O(\log n)$
$O(1)$

...
\(O(n^2)\)
\(O(n \log n)\)
\(O(n)\)
\(O(n)\)
\(O(\log n)\)
\(O(\log n)\)
\(O(1)\)
\(O(1)\)
\(\ldots\)
$O(n^2)$

$O(n \log n)$

$O(n)$

$O(\log n)$

$O(1)$

...
\[\Omega(n^2) \]
\[\Omega(n \log n) \]
\[\Omega(n) \]
\[\Omega(\log n) \]
\[\Omega(1) \]
\[\ldots \]
\(\Omega(n^2) \)
\(\Omega(n \log n) \)
\(\Omega(n) \)
\(\Omega(\log n) \)
\(\Omega(1) \)
\(\ldots \)
\(\Omega(n^2) \)
\(\Omega(n \log n) \)
\(\Omega(n) \)
\(\Omega(\log n) \)
\(\Omega(1) \)

\(\ldots \)
\(O(n^2) \)
0 pick up phone book
1 open to middle of phone book
2 look at names
3 if Smith is among names
 4 call Mike
5 else if Smith is earlier in book
6 open to middle of left half of book
7 go back to step 2
8 else if Smith is later in book
9 open to middle of right half of book
10 go back to step 2
11 else
12 quit
0 pick up phone book
1 open to middle of phone book
2 look at names
3 if Smith is among names
 4 call Mike
5 else if Smith is earlier in book
 6 search for Mike in left half of book
7
8 else if Smith is later in book
 9 search for Mike in right half of book
10
11 else
12 quit
merge sort
On input of n elements

if $n < 2$
 return

else
 sort left half of elements
 sort right half of elements
 merge sorted halves
<table>
<thead>
<tr>
<th>1</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
$O(n \log n)$
On input of n elements
 if $n < 2$
 return
 else
 sort left half of elements
 sort right half of elements
 merge sorted halves
On input of n elements

if $n < 2$
 return

else
 sort left half of elements
 sort right half of elements
 merge sorted halves
$$T(n) = O(1)$$

if \(n < 2 \)
On input of n elements

if $n < 2$
 return

else

 sort left half of elements
 sort right half of elements
 merge sorted halves
On input of n elements

if $n < 2$

return

else

sort left half of elements

sort right half of elements

merge sorted halves
On input of n elements

if $n < 2$
 return

else
 sort left half of elements
 sort right half of elements
 merge sorted halves
$T(n) = T(n/2) + T(n/2) + O(n)$

if $n \geq 2$
$O(n \log n)$
Week 3