CS50 Machine Learning

Week 7

Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

>>> from sklearn import svm

what other programmers think I do

what I really do

Machine Learning?

Machine Learning?

Image Recognition

Voice Recognition

Natural Language Processing

Search **Engines**

Image Recognition

Natural Language Processing

Winston's own

Whodunit!

Image recognition

Machine Learning algorithms

Machine Learning algorithms

Image Classification

プラアフチ**フ**リファチノテンママ

Handwritten digit classification

Nearest Neighbor Classifier

Minimal distance

Labeled training set

Test point

Labeled training set

Test point

Flatland by Edwin Abbott Abbott (1884)

Flatland, Edwin Abbott Abbott, 1984

Flatland: The story describes a two-dimensional world occupied by geometric figures. The narrator is a square named A Square who guides the readers through some of the implications of life in two dimensions.

On New Year's Eve, A Square dreams about a visit to a **one-dimensional** world (**Lineland**) inhabited by "lustrous **points**", in which he attempts to convince the realm's monarch of a second dimension; but is unable to do so.

Following this vision, A Square is himself visited by a **three-dimensional** sphere named **A Sphere**, which he cannot comprehend until he sees **Spaceland** (a tridimensional world)

Ready to go beyond Lineland, Flatland, and Spaceland?

64 dimensional space

Labeled training set

Test point


```
0 0 5 13 9 1 0 0
0 0 13 15 10 15 5 0
0 3 15 2 0 11 8 0
0 4 12 0 0 8 8 0
0 5 8 0 0 9 8 0
0 4 11 0 1 12 7 0
0 2 14 5 10 12 0 0
0 0 6 13 10 0 0 0
```

```
= 31.98
```



```
0 0 5 13 9 1 0 0
0 0 13 15 10 15 5 0
0 3 15 2 0 11 8 0
0 4 12 0 0 8 8 0
0 5 8 0 0 9 8 0
0 4 11 0 1 12 7 0
0 2 14 5 10 12 0 0
0 0 6 13 10 0 0 0
```

= 45.97

The digits dataset

2

4

8

Labeled training set

Python code (Supervised Learning)

```
np.sqrt(np.sum((x - y)**2)) ???
x = [1, 1]
y = [3, 4]
x - y = [-2, -3]
(x - y) **2 = [4, 9]
np.sum((x - y)**2) = 13
np.sqrt(np.sum((x - y)**2)) = 3.60
```


Labeled training set

Labeled

Test point

Training subset

Labeled
Training set

Testing set

Labeled Training set

Testing set

With Nearest Neighbor Classifier

The CIFAR-10 dataset

airplane automobile bird cat deer dog frog horse

Labeled training set

www.kaggle.com

With Nearest Neighbor Classifier

~ 30% Correct

Training set for category '0':

Training set for category 'horse':

Challenges

Features

0	0	5	13	9	1	0	0	0-	3 13		1	
0	0	13	15	10	15	5	0	-				*
0	3	15	2	0	11	8	0	2 -				8-
0	4	12	0	0	8	8	0	3 -				
0	5	8	0	0	9	8	0	Q -				(a .
0	4	11	0	1	12	7	0	5 -				0.7
0	2	14	5	10	12	0	0	ā -				0-
0	0	6	13	10	0	0	0	7 -				-

Features

Feature Representation

Deep Learning

Tensorflow

Deep dream generator

http://deepdreamgenerator.com

The CIFAR-10 dataset

airplane automobile bird cat deer dog frog horse

Labeled training set

With Deep Learning...

~ 95% Correct

Is 95% enough?

Tesla Model S. Michael Nagle for The New York Times

Image-processing software can detect lane stripes, signs, stoplights,

Forward-facing camera Forward radar eflected microwaves can ntify location and ed — but not always road signs and other e — of nearby vehicles. objects.

GPS

Utrasonic

Reflected

sound waves

distance to nearby objects.

sensors

detect

Combined with highprecision mapping, GPS determines the car's position on the road.

MAY 2016

http://wapo.st/2981upr

"Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied"

Challenges

Text Clustering

Text clustering

k = 2

- Robin Hood - The Matrix - The King's Speech - Aladdin - A Beautiful Mind - Tine King's Speech - Aladdin - A Beautiful Mind - Finding Nemo CLUSTER 1: - ARedutiful Mind - Tine Matrix - Tine King's Speech CLUSTER 2: - Robin Hood - Areddin

- Pinding Nemo

k = 2

Unlabeled data

K-means

K-means

Robin Hood

Told with animals for it's cast, the story tells of Robin Hood (a fox) and Little John (a brown bear), who rob from the rich to give to the poor.

Unlabeled data

Aladdin Robin Hood Finding Nemo A Beautiful Mind

The Matrix

The King's Speech

Something simpler...

$$k = 2$$

- a) I love CS50. Staff is awesome, awesome, awesome!
 - e) Best of CS50? Staff. And cakes. Ok, CS50 staff.

- b) I have a dog and a cat.
- My dog keeps chasing my cat. Dogs!

K-means

a) I love CS50. Staff is awesome, awesome!

- a) I love CS50. Staff is awesome, awesome, awesome!
- **b)** I have a dog and a cat.
- Best of CS50? Staff. And cakes. Ok, CS50 staff.
- d) My dog keeps chasing my cat. Dogs!

Bags of words

	awesome	best	cakes	cat	chasing	cs50	dog	dogs	keeps	love	ok	staff
a)	3	0	0	0	0	1	0	0	0	1	0	1
b)	0	0	0	1	0	0	1	0	0	0	0	0
c)	0	1	1	0	0	2	0	0	0	0	1	2
d)	0	0	0	1	1	0	1	1	1	0	0	0

- a) I love CS50. Staff is awesome, awesome, awesome!
- **b)** I have a dog and a cat.
- c) Best of CS50? Staff. And cakes. Ok, CS50 staff.
- d) My dog keeps chasing my cat. Dogs!

	awesome	best	cakes	cat	chasing	cs50	dog	dogs	keeps	love	ok	staff
a)	3/6	0	0	0	0	1/6	0	0	0	1/6	0	1
b)	0	0	0	1/2	0	0	1/2	0	0	0	0	0
c)	0	1/7	1/7	0	0	2/7	0	0	0	0	1/7	2/7
d)	0	0	0	1/5	1/5	0	1/5	1/5	1/5	0	0	0

12 dimensional space

- a) I love CS50. Staff is awesome, awesome, awesome!
 - e) Best of CS50? Staff. And cakes. Ok, CS50 staff.

- b) I have a dog and a cat.
- My dog keeps chasing my cat. Dogs!

K-means

Python code (Unsupervised Learning)

Recap

Handwritten digit classification

Text clustering

k = 2

IMDB synopses for: - Robin Hood - The Matrix - The King's Speech - Aladdin - A Beautiful Mind - The King's Speech CLUSTER 1: - A Beautiful Mind - The Matrix - The King's Speech CLUSTER 2: - Robin Hood - Aladdin

https://docs.google.com/spreadsheets/d/1udJ4nd9EKIX_awB90JCbKaStuYh6aVjh1X6j8iBUXIU/edit#gid=0

- Finding Nemo

Machine Learning?

Image Recognition

Voice Recognition

Natural Language Processing

Search **Engines**

Machine Learning... so much more

```
##
              шш
              ____
        †† ††
              TTTTT
      ###
              ###
              ++ ++ ++
     шшшш
              шшшш
              ***
     oldsymbol{\pi}oldsymbol{\pi}oldsymbol{\pi}oldsymbol{\pi}oldsymbol{\pi}
              oldsymbol{\pi} oldsymbol{\pi} oldsymbol{\pi} oldsymbol{\pi}
   #####
              #####
   #######
              шишиши
```


Machine Learning... so much more

MARCH 2016

"Commentators were convinced [AlphaGo] had made mistakes, but as it racked up wins, they were forced to concede that perhaps the machine [...] was using strategies its human masters had simply overlooked."

*www.economist.com