CS50 Machine Learning

Week 7

Machine Learning

what society thinks I do

what my $\underset{\substack{\text { I do } \\ \text { friends think }}}{\text { and }}$

what my parents think

what other programmers think I do
what I think I do
what I really do
*pythonprogramming.net

Machine Learning?

Machine Learning?

Image Recognition

Natural Language Processing

Nineteen Eighty-Four by George Orwell (1984)
[...]
BIG BROTHER IS WATCHING
YOU, the caption
said, while the
dark eyes looked
deep into
Winston's own
[...]

Whodunit!

Image recognition

Machine Learning algorithms

Machine Learning algorithms

Image Classification

Handwritten digit classification

Nearest
Neighbor
Classifier

Minimal distance

Labeled training set
Test point

Nearest
$4 \begin{aligned} & \text { Neighbor } \\ & \text { Classifier }\end{aligned}$
Classifier

6°
66
Minimal distance

Labeled training set
Test point

Nearest
Neighbor
Classifier

Labeled training set
Test point

> 11000011 10111101 01011010 01111110 01011010 01100110 10111101 11000011

Flatland by Edwin Abbott Abbott
(1884)

Flatland, Edwin Abbott Abbott, 1984

Flatland: The story describes a two-dimensional world occupied by geometric figures. The narrator is a square named A Square who guides the readers through some of the implications of life in two dimensions.

On New Year's Eve, A Square dreams about a visit to a one-dimensional world (Lineland) inhabited by "lustrous points", in which he attempts to convince the realm's monarch of a second dimension; but is unable to do so.

Following this vision, A Square is himself visited by a three-dimensional sphere named A Sphere, which he cannot comprehend until he sees Spaceland (a tridimensional world)

Ready to go beyond Lineland, Flatland, and Spaceland?

> 11000011 10111101 01011010 01111110 01011010 01100110 10111101 11000011

0	0	5	13	9	1	0	0
0	0	13	15	10	15	5	0
0	3	15	2	0	11	8	0
0	4	12	0	0	8	8	0
0	5	8	0	0	9	8	0
0	4	11	0	1	12	7	0
0	2	14	5	10	12	0	0
0	0	6	13	10	0	0	0

$\begin{array}{llllllll}0 & 0 & 5 & 13 & 9 & 1 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 13 & 15 & 10 & 15 & 5 & 0\end{array}$
$\begin{array}{llllllll}0 & 3 & 15 & 2 & 0 & 11 & 8 & 0\end{array}$
$\begin{array}{llllllll}0 & 4 & 12 & 0 & 0 & 8 & 8 & 0\end{array}$
$\begin{array}{llllllll}0 & 5 & 8 & 0 & 0 & 9 & 8 & 0\end{array}$
$\begin{array}{llllllll}0 & 4 & 11 & 0 & 1 & 12 & 7 & 0\end{array}$
$\begin{array}{llllllll}0 & 2 & 14 & 5 & 10 & 12 & 0 & 0\end{array}$
$\begin{array}{llllllll}0 & 0 & 6 & 13 & 10 & 0 & 0 & 0\end{array}$

64 dimensional space

Nearest
Neighbor
Classifier

$6^{6} \frac{6}{6}$

$b^{0} \quad 6{ }^{0}$ dist(6.6

Labeled training set
Test point

$\operatorname{dise}(0)$

$\operatorname{disit}([)$

$\left.\begin{array}{cccccccccccccc}0 & 0 & 5 & 13 & 9 & 1 & 0 & 0 & 0 & 0 & 4 & 14 & 5 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 13 & 15 & 10 & 15 & 5 & 0 & 0 & 0 & 13 & 14 & 0 & 0 \\ 0 & 0 \\ 0 & 3 & 15 & 2 & 0 & 11 & 8 & 0 & 0 & 2 & 16 & 10 & 0 & 0 \\ 0 & 0 \\ 0 & 4 & 12 & 0 & 0 & 8 & 8 & 0 & 0 & 4 & 16 & 7 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 5 & 8 & 0 & 0 & 9 & 8 & 0 & 0 & 16 & 16 & 15 & 4 & 0 \\ 0 & 11 & 0 & 1 & 12 & 7 & 0 & 0 \\ 0 & 2 & 14 & 5 & 10 & 12 & 0 & 0 & 16 & 9 & 4 & 16 & 2 & 0 \\ 0 & 0 & 6 & 13 & 10 & 0 & 0 & 0 & 15 & 13 & 6 & 16 & 11 & 0 \\ 0 & 0 & 4 & 13 & 16 & 15 & 5 & 0\end{array}\right)$

The digits dataset

$$
\begin{aligned}
& 00000000000000000000 \\
& 111111111111111111111 \\
& 222222222222222222222 \\
& 33333333333333333333 \\
& 444444444444444444 \\
& 55555555555555555555 \\
& 66666666666666666666 \\
& 77777777777777777797 \\
& 88888888888888688884 \\
& 99999999499999999999
\end{aligned}
$$

Python code

(Supervised Learning)

np.sqrt(np.sum($(x-y) \star * 2))$???

$\mathrm{x}=[1,1]$
$y=[3,4]$
$x-y=[-2,-3]$
$(x-y) * * 2=[4,9]$
np.sum $((x-y) * * 2)=13$
np.sqrt(np.sum $((x-y) * * 2))=3.60$

Labeled training set

Labeled

Labeled
Testing set
Training set

Labeled
Training set

Testing set

With Nearest Neighbor Classifier

The CIFAR-10 dataset

Labeled training set

With Nearest Neighbor Classifier

Training set for category ' 0 ':

Training set for category 'horse':

Challenges

*http://cs231n.github.io

Features

0	0	5	13	9	1	0	0
0	0	13	15	10	15	5	0
0	3	15	2	0	11	8	0
0	4	12	0	0	8	8	0
0	5	8	0	0	9	8	0
0	4	11	0	1	12	7	0
0	2	14	5	10	12	0	0
0	0	6	13	10	0	0	0

Features

$(5,1,4,4,4) \leftarrow$

Feature Representation

Deep Learning

*http://www.slideshare.net/roelofp/220115dlmeetup

Tensorflow

Deep dream generator

The CIFAR-10 dataset

Labeled training set

With Deep Learning...

Is 95\% enough?

MAY 2016

http://wapo.st/2981upr
"Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit sky, so the brake was not applied"

Challenges

*http://cs231n.github.io

Text Clustering

Text clustering

IMDB synopses for：

－Robin Hood
－The Matrix
－The King＇s Speech
－Aladdin
－A Beautiful Mind
－Finding Nemo

CLUSTER 1：

－A？Beautiful Mind

- т月е Matrix
- T月巴 King＇s Speech

CLUSTER 2：
－PROBin Hood
－APaddin
－Proding Nemo
$\mathrm{k}=2$

$$
\mathrm{k}=2 \quad \text { Unlabeled data }
$$

K-means

Robin Hood

```
Told with animals for it's
cast, the story tells of
Robin Hood (a fox) and
Little John (a brown
bear), who rob from the
rich to give to the poor.
[...]
```


Robin Hood

Ak=2

Unlabeled data

A Beautiful Mind

The Matrix
Aladdin

Robin Hood

Finding Nemo

K-means

Something simpler...

a) Il love CS50. Staff is awesome, awesome, awesome!
b) I have a dog and a cat.
c) Best of CS50? Staff.

And cakes. Ok, CS50 staff.
d) My dog keeps chasing my cat. Dogs!

CLUSTER 1:

a) c)

CLUSTER 2:
b) d)
$\mathrm{k}=2$
b) I have a dog and a cat.
d) My dog keeps chasing

my cat. Dogs!

a) I love CS50. Staff is
awesome, awesome, awesome!
c) Best of CS50? Staff.

And cakes. Ok, CS50 staff.

K-means

a) l love CS50. Staff is awesome, awesome, awesome!

a) I love CS50. Staff is awesome, awesome,
a) Il love CS50. Staff is awesome, awesome, awesome!
b) Thave a dog and a cat.
c) Best of CS50? Staff. And cakes. Ok, CS50 staff.
d) My dog keeps chasing my cat. Dogs!

Bags of words

awesome best cakes cat chasing cs50 dog dogs keeps love ok staff

a)	3	0	0	0	0	1	0	0	0	1	0	1
b)	0	0	0	1	0	0	1	0	0	0	0	0
c)	0	1	1	0	0	2	0	0	0	0	1	2
d)	0	0	0	1	1	0	1	1	1	0	0	0

a) I love CS50. Staff is awesome, awesome, awesome!
b) I have a dog and a cat.
c) Best of CS50? Staff. And cakes. Ok, CS50 staff.
d) My dog keeps chasing my cat. Dogs!

Frequency

	awesome	best	cakes	cat	chasing	cs 50	dog	dogs	keeps	love	ok	staff
a)	$3 / 6$	0	0	0	0	$1 / 6$	0	0	0	$1 / 6$	0	1
b)	0	0	0	$1 / 2$	0	0	$1 / 2$	0	0	0	0	0
c)	0	$1 / 7$	$1 / 7$	0	0	$2 / 7$	0	0	0	0	$1 / 7$	$2 / 7$
d)	0	0	0	$1 / 5$	$1 / 5$	0	$1 / 5$	$1 / 5$	$1 / 5$	0	0	0

a) I love CS50. Staff is awesome, awesome,

a) I love CS50. Staff is awesome, awesome, awesome! awesome!

$$
(3 / 6,0,0,0,0,1 / 6,0,0,0,1 / 6,0,1)
$$

12 dimensional space

b) I have a dog and a cat.
d) My dog keeps chasing

my cat. Dogs!

a) I love CS50. Staff is
awesome, awesome, awesome!
c) Best of CS50? Staff.

And cakes. Ok, CS50 staff.

K-means

Python code

(Unsupervised Learning)

Recap

Handwritten digit classification

Text clustering

IMDB synopses for:

- Robin Hood
- The Matrix
- The King's Speech
- Aladdin
- A Beautiful Mind
- Finding Nemo
$\mathrm{k}=2$

CLUSTER 1:

- A Beautiful Mind
- The Matrix
- The King's Speech

CLUSTER 2:

- Robin Hood
- Aladdin
- Finding Nemo

Machine Learning?

Machine Learning... so much more

Machine Learning... so much more

MARCH 2016

"Commentators were convinced [AlphaGo] had made mistakes, but as it racked up wins, they were forced to concede that perhaps the machine [...] was using strategies its human masters had simply overlooked."

