P vs. NP

The Greatest Unsolved Problem in
Computer Science

And perhaps all of Mathematics!

IRVOURESTRYINGITO/SOLVEPIVS?

Why care about Theory?

e Algorithms matter, so we should study them!
e We can know the limits of computation
o Models of Computers - “What is a
Computer?”
o Models of algorithms - “In what ways are
algorithms similar to one another?”
e Helps solve problems and use solutions to solve
other problems

Motivation

e Are algorithms invented or discovered?

e |[s there no ‘fast’ algorithm to solve an sudoku? Or are we just too dumb to
discover it?

e Literally a ‘Million Dollar Question’

P vs. NP

Are problems that are easy to check also
easy to solve?

History (<1965)

Slow

Factoring

Traveling Salesman Problem
Determine if number is prime
Discrete Fourier Transform

Fast

Greatest Common Divisor
Sorting

History (1965)

Slow Fast
e Factoring e Greatest Common Divisor
e Traveling Salesman Problem e Sorting
e Determine if number is prime e Discrete Fourier Transform

L J

Cooley Tukey FFT!

History (2002)

Slow Fast

Greatest Common Divisor
Sorting

Discrete Fourier Transform
Determine if number is prime

AKS Primality Test! J

e Factoring
e Traveling Salesman Problem

History

Slow Fast
e Factoring e Greatest Common Divisor
e Traveling Salesman Problem e Sorting
e Discrete Fourier Transform
e Determine if number is prime

History

e Stephen Cook, Leonid Levin - Cook-Levin theorem

o Found that some algorithmic problems are connected by core difficulty (NP-Completeness)
o What does this mean?

What is P? What is NP? Why must they fight?

e P and NP are sets of problems that require an algorithm to
solve

e P vs. NP is really the question: is P = NP ?
o We know that PENP

NP

The Set: P (Polynomial-Time)

The Set P is the set of problems for which there exists a
polynomial time algorithm that generates a solution (Algorithm
is O(nX); n is size of problem)

e Basically: Problems that can be solved quickly.

7854 =1-4746 +3108

Problems include: 1746 =1-3108 + 1638
e Finding GCD , L .
e Linear Programming 3108=1-1638+1470
e Determining if a number is prime* 1638=1-1470 +168
e Multiplication

1470 =8-168+126

168=1-126 +42
*=Not obvious! Took smart people until 2002 126=3.42 +0.

The Set: NP (Nondeterministic Polynomial-Time)

The Set NP is the set of decision problems for which there
exists a polynomial time algorithm to check if a solution is
correct

Basically: Problems that can be checked quickly.

Problems include;

Sudoku

Factoring

Traveling Salesman Problem: inputs {V}, {E = VxV}, k
Multiplication

513]4]6]7]8]9]1]2]
6]7]2f1/9]5]3]4]8
1]98f3/4[2]5]6]7]
8[5/9]7]6[1]4]2]3]
4]2]6f8]5[3]7]9]1
7]1]3]9/2/4]8]5]6
916/1]5/3[7]2[8]4]
2]8]7f4]1/9]6]3]5
314]5]2(8]6]1[{7]9

At least in NP? Or also in P?

Sorting a list?
Multiplication?
Given sets of Vertices (V) and Edges (E =V x V), is the graph connected?
Rubik’s cube?

Best move in Chess?

Subset Sum?
o Ex: Is there a subset of the set {3, 10, -4, 5, -16, -3} that sums to -1 ?

NP

NP-Complete

Reduction

e A Reduction is a Polynomial-time algorithm that converts a solution of one

problem to a solution of another problem.
o Independent Set Problem
o Vertex Cover Problem
o Clique Problem

Reduction

e A Reduction is a Polynomial-time algorithm that converts a solution of one
problem to a solution of another problem.

{an} Original Ciraph

Reduction

e A Reduction is a Polynomial-time algorithm that converts a solution of one
problem to a solution of another problem.

(s} Qriginnd Ceraph (Heh Imelepsendent Sei

Reduction

e A Reduction is a Polynomial-time algorithm that converts a solution of one
problem to a solution of another problem.

o

N " k Fi
5 r
i %
) S, I.l'
—

in} Originanl CGiraph (el Imcleperneleng St

Reduction

e A Reduction is a Polynomial-time algorithm that converts a solution of one
problem to a solution of another problem.

%,
L
. L
T %
o 5 § | .
e TR F. i ey]

'h iy .: -..__:::u..-'

{n} Originnl CGiraph (Eh Imlegeensbeont St le}h Yerex Cover

Fignre 1: Relations among Independent Set, Yertex Cover, and Cligoe

Reduction

e A Reduction is a Polynomial-time algorithm that converts a solution of one
problem to a solution of another problem.

SAT

->
Vertex Cover

Turing Machine

e Theoretical Model of a computer
e Alan Turing - ‘Mathematical functions on numbers can be just as well
executed by a Turing Machine’

e A Reduction of a Computer to its simplest abilities:
o Ability to read from memory, ability to write to memory.
o Given some input memory, run an algorithm on the Turing Machine (TM)

What do the Smart People Think? read: Not sammy

“I can’t find an efficient algorithm, but neither can all these famous people.”

P # NP (Probably)

How to Prove it

To prove P = NP:
e Give a Polynomial time algorithm to solve ANY NP-Complete problem

To prove P # NP:
e Prove that there exists NO ALGORITHM to solve some NP problem in

polynomial time
o This is not an easy task!

NP

So What if P=NP?

If P=NP, then every problem that is easy to check, is also easy to solve.
RSA Encryption would be easy to crack!

Artificial Intelligent systems would make huge leaps overnight

Economy would become perfectly efficient - Instantly finding arbitrage
opportunities

e Automatically generate mathematical proofs??

So What it P=NP

If P=NP, then Iso easy to solve.
RSA Encrypti
Artificial Intelk gk

Econorr
opportuniti
Automati

ng arbitrage

Philosophy

Proving Things?
Comedy?

:
rencuin@crassics

®
H CHARLOTTE BRONTE
Music? —

Art?
Literature?

“If P= NP, then the world would be a
profoundly different place than we usually
assume it to be. There would be no special value
in 'creative leaps', no fundamental gap between
solving a problem and recognizing the solution
once it’s found. Everyone who could appreciate
a symphony would be Mozart; everyone who
could follow a step-by-step argument would be
Gauss” - Scott Aaronson, MIT

Why should you care?

e Think about running time of your algorithms!

e Is there a faster way to do this”? Maybe not!

e Some people have already solved what you are trying to
do!

e Reductions - Is this the same problem as that?

e Million dollar question!

Why should you care?

e Think about running time of your algorithms!

e Is there a faster way to do this? Maybe not!

e Some people have already solved what you are trying to
do!

e Reductions - Is this the same problem as that?

e Million dollar question!

Thank You!

P vs. NP Page:
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm

P vs. NP and the Complexity Zoo:
https://www.youtube.com/watch?v=YX40hbAHx3s

NP-Hard / NP-Hard
/

P=NP=
NP-Complete

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
https://www.win.tue.nl/~gwoegi/P-versus-NP.htm
https://www.youtube.com/watch?v=YX40hbAHx3s&t=423s
https://www.youtube.com/watch?v=YX40hbAHx3s&t=423s

