
resize

TODO
¨  open file
¨  update outfile’s header info
¨  read infile’s scanline, pixel by pixel
¨  resize horizontally
¨  remember padding!
¨  resize vertically

copy.c	
¨  opens a file
¨  updates header info for outfile
¨  reads each scanline, pixel by pixel
¨  writes each pixel into the output file’s

scanline
	
cp	copy.c	resize.c	

TODO
þ  open file
¨  update outfile’s header info
¨  read infile’s scanline, pixel by pixel
¨  resize horizontally
¨  remember padding!
¨  resize vertically

bitmaps
¨  just an arrangement of bytes!
¨  how do we interpret this arrangement?
¨  bmp.h	

updating header info
¨  new bmp à new header info
¨  what’s changing?

¤ file size
¤ image size
¤ width
¤ height

BITMAPINFOHEADER	
¨  biWidth	

¤ width of image (in pixels)
n does not include padding

¨  biHeight	
¤ height of image (in pixels)

BITMAPINFOHEADER	
¨  biSizeImage	

¤ total size of image (in bytes)
n  includes pixels and padding

	
bi.biSizeImage	=		
				((sizeof(RGBTRIPLE)	*	bi.biWidth)	+	padding)		
				*	abs(bi.biHeight);	

BITMAPFILEHEADER	
¨  bfSize

¤ total size of file (in bytes)
¤ includes pixels, padding, and headers

¨  bf.bfSize	=	bi.biSizeImage	+	
				sizeof(BITMAPFILEHEADER)	+	
				sizeof(BITMAPINFOHEADER);	

¨  bi.biWidth	
¨  bi.biHeight	
¨  bi.biSizeImage	
¨  bf.bfSize	

¨  bi.biWidth	*=	n	
¨  bi.biHeight	*=	n	
¨  ...?	
¨  ...?	

old new

what’s changing?	

TODO
þ  open file
þ  update outfile’s header info
¨  read infile’s scanline, pixel by pixel
¨  resize horizontally
¨  remember padding!
¨  resize vertically

reading files
fread(data,	size,	number,	inptr);	
	
¨  data: pointer to a struct that will contain the bytes

you’re reading
¨  size: size of each element to read

¤  sizeof	
¨  number: number of elements to read
¨  inptr: FILE	* to read from

TODO
þ  open file
þ  update outfile’s header info
þ  read infile’s scanline, pixel by pixel
¨  resize horizontally
¨  remember padding!
¨  resize vertically

n = 2

for	each	pixel	in	row	
				write	n	times	

resize horizontally

n = 2

for	each	pixel	in	row	
				write	n	times	

resize horizontally

resize horizontally
n = 2

for	each	pixel	in	row	
				write	n	times	

resize horizontally
n = 2

for	each	pixel	in	row	
				write	n	times	

writing files
fwrite(data,	size,	number,	outptr);	
	
¨  data: pointer to the struct that contains the

bytes you’re reading from
¨  size
¨  number
¨  outptr: FILE	* to write to

TODO
þ  open file
þ  update outfile’s header’s info
þ  read infile’s scanline, pixel by pixel
þ  resize horizontally
¨  remember padding!
¨  resize vertically

padding
¨  each pixel is 3 bytes
¨  length of each scanline must be a multiple

of 4 bytes
¨  if the number of pixels isn’t a multiple of 4,

we need “padding”
¤ padding is just zeros (0x00)

padding
RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	

padding
RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	

RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 0x00	

padding
RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	

RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 0x00	

RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 0x00	 0x00	

padding
RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	

RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 0x00	

RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	 0x00	 0x00	

RGBtriple	 RGBtriple	 RGBtriple	 0x00	 0x00	 0x00	

padding
padding	=	(4	–	(bi.biWidth	*	sizeof(RGBTRIPLE))	%	4)	%	4	

¨  the outfile and infile have different widths

¤ so the padding is different!
¨  padding isn’t an RGBTRIPLE	

¤ we can’t fread padding

writing padding
fputc(chr,	outptr);	
	
¨  chr: char to write
¨  outptr: FILE	* to write to

fputc(0x00,	outptr);	

padding

RGBtriple	 RGBtriple	 0x
00	

0x
00	

n = 2

padding

RGBtriple	 RGBtriple	 0x
00	

0x
00	 RGBtriple	 RGBtriple	

n = 2

padding

RGBtriple	 RGBtriple	 0x
00	

0x
00	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	

n = 2

padding

RGBtriple	 RGBtriple	 0x
00	

0x
00	 RGBtriple	 RGBtriple	 RGBtriple	 RGBtriple	

n = 2

padding	=	(4	–	(bi.biWidth	*	sizeof(RGBTRIPLE))	%	4)	%	4	

¨  bi.biWidth	
¨  bi.biHeight	
¨  bi.biSizeImage	
¨  bf.bfSize	

¨  bi.biWidth	*=	n	
¨  bi.biHeight	*=	n	
¨  ...?	
¨  ...?	

old new

what’s changing?	

¨  bi.biWidth	
¨  bi.biHeight	
¨  bi.biSizeImage	
¨  bf.bfSize	
¨  padding	

¨  bi.biWidth	*=	n	
¨  bi.biHeight	*=	n	
¨  ...?	
¨  ...?	
¨  ...?	

old new

what’s changing?	

for	each	row	
				for	each	pixel	in	row	
								write	to	outfile	n	times	
				write	outfile's	padding	
				skip	over	infile's	padding	

pseudocode: resizing horizontally

TODO:
þ  open file
þ  update outfile’s header info
þ  read infile’s scanline, pixel by pixel
þ  resize horizontally
þ  remember padding!
¨  resize vertically

resize
¨  every pixel repeated n times
¨  every row repeated n times
n = 3

resize
¨  every pixel repeated n times
¨  every row repeated n times
n = 3

resize
¨  every pixel repeated n times
¨  every row repeated n times
n = 3

resize
¨  every pixel repeated n times
¨  every row repeated n times
n = 3

resize
¨  every pixel repeated n times
¨  every row repeated n times
n = 3

resize
¨  every pixel repeated n times
¨  every row repeated n times
n = 3

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize
¨  every pixel repeated n times
¨  every row repeated n times

n = 2

resize vertically
¨  multiple ways to do this!
1.  “rewrite” methods

¤  remember pixels in an array
¤  write array as many times as needed

2.  “re-copy” methods
¤  go back to the start of the original scanline
¤  re-scale scanline

file position indicator
fseek(inptr,	offset,	from);	
	
¨  inptr: FILE	*	to seek in
¨  offset: number of bytes to move cursor
¨  from:

¤  SEEK_CUR (current position in file)
¤  SEEK_SET	(beginning of file)
¤  SEEK_END	(end of file)

for	each	row	
				for	each	pixel	
								write	to	array	n	times	
				for	n	times	
								write	array	to	outfile					
								write	outfile	padding	
				skip	over	infile	padding	

pseudocode: “rewrite” method

for	each	row			
				for	n-1	times	
								write	pixels,	padding	to	outfile	
								send	infile	cursor	back	
				write	pixels,	padding	to	outfile	
				skip	over	infile	padding	

pseudocode: “recopy” method

TODO
þ  open file
þ  update outfile’s header info
þ  read infile’s scanline, pixel by pixel
þ  resize horizontally
þ  remember padding!
þ  resize vertically

this was resize

