
1

Databases

This is CS50. Harvard University. Fall 2015.

Cheng Gong

Table of Contents

Databases .. 1

Databases

• Back-end servers include web servers running software like Apache (httpd), which

is a program that serves web pages in response to requests, IIS (Internet Information

Server), or Nginx.

• Those web servers are behind one or more front-end servers like load balancers that

pass messages between the public and the back-end servers.

• We might have two such load balancers, with one running as the primary server and

the other as a "hot spare" that’s ready to take on the IP address of the primary load

balancer if it stops working.

• But the back-end web servers need to store information from users in some shared

place, since otherwise they would need to spend a lot of time copying that information

back and forth.

• Having the one server saving the shared state introduces a single point of failure again,

but the tradeoff for saving money and effort in redundancy at that level might be worth

the risk of lost business during downtime.

• So the way that last server saves the shared state more permanently is the topic for

today.

• We might have data like transaction data, order data, etc. that we want to keep safely.

So we might have multiple database servers that keep copies or segments of data.

• For example, the very first version of Facebook, that allowed students from just a

few college campuses, might have kept user data from each campus on a separate

database or server. This method of separating data is called sharding. This helps us

naturally load balance, but searching over all of our data is not as easy, and eventually

Databases

2

we might have a feature that requires us to combine our data. And eventually, we might

have too many buckets for our data, to maintain each of them separately.

• Horizontal scaling is increasing the number of servers that we have that do the same

thing, for example buying more web servers to handle more visitors. Vertical scaling,

on the other hand, is increasing the power of a single server by upgrading its hardware,

but there is a limit to how far that can get us.

• And when we have too much data to combine, we might separate them by function or

feature, so that we are able to find them more logically.

• But assuming we can fit all our data on the same (large) database server, we might

duplicate it to another server to handle more users. Another way to do this would

be to have one large server for writes (saving data) but many smaller servers for

reads (accessing data). And this might make sense if our website has users reading

information (like a News Feed) more often than they write (posting new statuses).

• One characteristic we might want is high availability, which can be achieved with

having two servers replicating, or duplicating data, to each other (with software) and

both being allowed to read and write.

• We might also have two databases that write data, and duplicate data to two databases

in the middle, each of which duplicate data again to two servers, such that we have a

tree-like structure for effective data replication.

• If this process takes a long period of time, users might be reading outdated information

from the read database servers.

• Now that we’ve looked at the high-level overview of setting up our database servers,

we’ll look at some lower-level details. But before that, we take a look at this article1

about WordPress, a blogging platform, turning on HTTPS encryption for its sites.

Though this might be an upside, it might also break websites who include images

with URLs that are normal HTTP, since browsers generally disallow mixing protocols

(since including HTTP requests within an HTTPS means that parts of the page won’t

be encrypted, and therefore not as secure).

• So CRUD is an acronym for the operations that a typical database needs: create, read,

update, and delete.

• SQL, Structured Query Language, is popularly used for database software and has the

matching operations of INSERT, SELECT, UPDATE, and DELETE.

1 http://techcrunch.com/2016/04/08/wordpress-com-turns-on-https-encryption-for-all-websites/

http://techcrunch.com/2016/04/08/wordpress-com-turns-on-https-encryption-for-all-websites/
http://techcrunch.com/2016/04/08/wordpress-com-turns-on-https-encryption-for-all-websites/

Databases

3

• We can think of databases as like a workbook in Excel or other spreadsheet software:

• A table in a database is like a worksheet within one of these files, with rows and

columns.

• To represent a customer, for example, we might want their:

email

name (first and last)

unique identifier

postal address

credit card info

age

password

transactions

username

phone

• So we might create this in Excel with column headers and typing in our data without

much consideration. But in databases, where we might not have hundreds or thousands

of rows but many, many more, we need to be more careful about how we store our data.

Databases

4

• Going back to our list of information, we might want to think about the type and size

of data we want for each field. This will help our database store and search for things

more efficiently. The types we could have include:

CHAR

Some characters of exactly a fixed length.

VARCHAR

Some character of up to some length.

INT

An integer of 32-bits (or about 4 billion values).

BIGINT

An integer of 64-bits, which is much larger, but now we need to allocate more

space in case we need to hold that many bits.

FLOAT

An approximated decimal number.

DECIMAL

Since financial markets and other applications might need the high precision,

there is a special data type that stores decimal numbers exactly, using a specific

number of bits to store each part of the number and combining them in software

later.

DATE

Stored in the format of YYYY-MM-DD, since it allows for easy sortability.

TIME

Stored as HH:MM:SS.

DATETIME

A combination of DATE and TIME.

ENUM

…

• So for our customer database, we might want:

Databases

5

email - VARCHAR - 255

As a database designer, we’d have to choose some maximum length, and

historically 255 was the maximum value, so that tends to be a go-to value.

name (first and last) - VARCHAR - 255

unique identifier - INT

Someone might have multiple emails, or even eventually split our data into

multiple tables but be able to link them. And comparing ints are also much faster

than entire strings of text.

postal address

This probably includes many fields, which allows us the opportunity to design

our database in greater detail:

street - VARCHAR - 255

city - VARCHAR - 255

state - CHAR - 2

• Assuming our customers are all in the US, we know that all the states have

two-character fields. And setting this allows the database software to allocate

exactly two bytes for each item in that column, which helps us with random

access and jumping between rows.

• Alternatively, there’s another data type called an ENUM, a list of pre-specified

strings that we choose from for each value.

postal code - CHAR - 5

• We don’t want to use an int here, because the leading 0s in a postal code

would be lost!

credit card info

age - DATE

We wouldn’t want to store ages as an int, since we wouldn’t know when to

increase them, but a date for their birthday would work.

password

Databases

6

We would most likely store our passwords as hashes, so the value actually stored

is hard to reverse.

transactions

username

phone

• Choosing the right types help us with validating data and optimizing future access.

• Another major feature of databases is indexes, which just uses fancy data structures

to optimize the layout of the data on disk and memory.

• We can designate some column as PRIMARY, which means that we will uniquely

identify rows with this column and use it most frequently to do so.

• A column can be UNIQUE, too, but not be used to identify users. For example, we

might require that usernames be unique in our example.

• An INDEX means that the database should optimize the column for searching or

analysis. But the cost would be that insertions and deletions might be slower, since the

database would have to rearrange our data each time.

• Going back to our example, we have an inefficiency where we store the city, state, and

postal code of each of our customers, even though customers with the same postal

code must live in the same city and state. So we might have one table that stores

information about our users, and one table that stores geographic information, where

postal codes are mapped to cities and states, so we don’t need to store that information

over and over again.

• The process of combining information from different tables is called joining them.

• Next time, we’ll talk about some problems we might run into as we implement websites

in HTML and CSS.

	Databases
	Table of Contents
	Databases

