
1

Web Programming

This is CS50. Harvard University. Fall 2015.

Cheng Gong

Table of Contents

Announcements .............................................................................................................. 1

Web Programming .........................................................................................................  1

Announcements

• This story1 describes a man who wrote a script to programmatically delete files from

some folders, and he made a mistake with writing the script, which resulted in all of

his files being deleted!

• We’ll also have seminars, the times of which are listed here2.

Web Programming

• HTML is a language (but not programming language) since it doesn’t contain much

logic in how it displays a page.

• JavaScript, on the other hand, is a programming language. It’s used for features we see

every day, like showing new notifications or emails without having to refresh the page.

• APIs, application programming interfaces, are like a service that someone provides,

which you can programmatically access for some functionality. Libraries are

collections of code that we can download and use in our own programs.

• JavaScript is an interpreted language, which means that it is turned into 0s and 1s as

the browser executes it. A compiled language, on the other hand, needs to be converted

to 0s and 1s all at once, before the operating system can run it.

1  http://www.independent.co.uk/life-style/gadgets-andtech/news/man-accidentally-deletes-his-entire-company-

with-one-line-of-bad-code-a6984256.html
2  https://cs50.harvard.edu/mba/seminars/

http://www.independent.co.uk/life-style/gadgets-andtech/news/man-accidentally-deletes-his-entire-company-with-one-line-of-bad-code-a6984256.html
https://cs50.harvard.edu/mba/seminars/
http://www.independent.co.uk/life-style/gadgets-andtech/news/man-accidentally-deletes-his-entire-company-with-one-line-of-bad-code-a6984256.html
http://www.independent.co.uk/life-style/gadgets-andtech/news/man-accidentally-deletes-his-entire-company-with-one-line-of-bad-code-a6984256.html
https://cs50.harvard.edu/mba/seminars/


Web Programming

2

• So a simple webpage might look like this, with code on the left, and a tree-like structure

on the right:

# We see that each element, based on its indentation in the code, maps naturally to

a hierarchical tree.

• JavaScript relies on manipulating this data structure in memory, through modifying,

inserting, or deleting elements.

• In Scratch, we might have used the say  block, the equivalent of which in JavaScript

is something like window.alert("hello, world"); .

• A forever  block could be translated to JavaScript with:

while (true)

{

    window.alert("hello, world");

}

# Normally we might have some other condition within the parentheses for the while

loop, but using true  which will always be true, we can make the loop continue

forever.

• A repeat 10  block might be:

for (var i = 0; i < 10; i++)

{

    window.alert("hello, world");



Web Programming

3

}

# This is a little more complicated but within the for  parentheses, we notice that

we’re making a new variable called i , setting it to 0 , checking that it’s less than

10 , and adding one to it ( i++  is equivalent to i = i + 1 , adding one to i ).

# We could also change it to var i = 1; i # 10; i++  to achieve the same

results, but conventionally we start with 0. And the first element in arrays and other

data structures is generally labeled 0.

• We could translate these blocks to:

var counter = 0;

while (true)

{

    window.alert(counter);

    counter++;

}

# We notice that window.alert  can take in a variable, but there might be a bug

where eventually the variable counter  overflows and behaves incorrectly, since

there is some maximum value that it can hold.

• Boolean expressions from Scratch also map fairly easily:



Web Programming

4

(x < y)

((x < y) && (y < z))

• Even though the punctuation and syntax might not be familiar, the underlying ideas of

JavaScript are quite close to those we used in Scratch.

• We can have conditions, too, and many forks without having to nest indentations like

we did in Scratch:

if (x < y)

{

    window.alert("x is less than y");

}

else if (x > y)

{



Web Programming

5

    window.alert("x is greater than y");

}

else

{

    window.alert("x is equal to y");

}

# Without the else if , we would end up with something happening twice if x < y ,

since the first if  statement would be true, then the next if  and else  statements

would be treated as separate, and the else  would be true. But with else if ,

only one of the three possibilities will be considered, as only the first true condition

will be executed.

• We take a look at dom-0.html 3, where we have a form:

<!DOCTYPE html>

<html>

    <head>

        <script>

            function greet()

            {

                alert('hello, ' + document.getElementById('name').value +

 '!');

            }

        </script>

        <title>dom-0</title>

    </head>

    <body>

        <form id="demo" onsubmit="greet(); return false;">

            <input id="name" placeholder="Name" type="text"/>

            <input type="submit"/>

        </form>

    </body>

</html>

3  http://cdn.cs50.net/2016/mba/classes/8/src8/dom-0.html.src

http://cdn.cs50.net/2016/mba/classes/8/src8/dom-0.html.src
http://cdn.cs50.net/2016/mba/classes/8/src8/dom-0.html.src


Web Programming

6

# But within the code, we have onsubmit="greet(); return false;"  instead

of a URL that the browser should take us to, which seems to call the function

greet()  and then stop (which we accomplish with return false ). The open

and close parentheses mean that this function has no inputs.

# And then inside the head , we have the script  element that alerts us with

whatever we typed into the name  box inside the form. We get that by accessing a

document  object (which is built-in to JavaScript) and call the getElementById

function on that, passing in the ID of the element we want (in this case, name  which

is what we called the input text box), and finally accessing the value  of, or what

we typed into, that element. And the +  is just adding the strings together so we can

alert the user with something like hello, Marta! .

• Let’s take a look at dom-2.html 4:

<!DOCTYPE html>

<html>

    <head>

        <script src="http://code.jquery.com/jquery-latest.min.js"></

script>

        <script>

            $(document).ready(function() {

                $('#demo').submit(function(event) {

                    alert('hello, ' + $('#name').val() + '!');

                    event.preventDefault();

                });

            });

        </script>

        <title>dom-2</title>

    </head>

    <body>

        <form id="demo">

            <input id="name" placeholder="Name" type="text"/>

            <input type="submit"/>

        </form>

  </body>

4  http://cdn.cs50.net/2016/mba/classes/8/src8/dom-2.html.src

http://cdn.cs50.net/2016/mba/classes/8/src8/dom-2.html.src
http://cdn.cs50.net/2016/mba/classes/8/src8/dom-2.html.src


Web Programming

7

</html>

# Here, we’re using a library called jQuery which allows us to accomplish the same

thing but a little more elegantly. Even though it looks more complicated here, for

bigger features it simplifies code quite a bit.

• Let’s look at form-0.html 5:

<!DOCTYPE html>

<html>

    <head>

        <title>form-0</title>

    </head>

    <body>

        <form action="register.php" method="get">

            Email: <input name="email" type="text"/>

            <br/>

            Password: <input name="password" type="password"/>

            <br/>

            Password (again): <input name="confirmation" type="password"/>

            <br/>

            I agree to the terms and conditions: <input name="agreement"

 type="checkbox"/>

            <br/><br/>

            <input type="submit" value="Register"/>

        </form>

    </body>

</html>

# This might be how we implement a sign-up form, but it allows us to put anything or

nothing at all in each field.

• form-1.html6, on the other hand, allows us to validate each field, or check that the

value in each field matches our expectations.

• We could (and should) check that the fields are valid when the form is sent back to our

server, but since the JavaScript code runs in the users' browsers, it runs a lot faster

than sending a request to the server and waiting for a response. But we should still

5  http://cdn.cs50.net/2016/mba/classes/8/src8/form-0.html.src
6  http://cdn.cs50.net/2016/mba/classes/8/src8/form-1.html.src

http://cdn.cs50.net/2016/mba/classes/8/src8/form-0.html.src
http://cdn.cs50.net/2016/mba/classes/8/src8/form-1.html.src
http://cdn.cs50.net/2016/mba/classes/8/src8/form-0.html.src
http://cdn.cs50.net/2016/mba/classes/8/src8/form-1.html.src


Web Programming

8

check on our servers too because some users don’t enable JavaScript. And libraries

exist such that we might program these checks once, and have our code generate the

validation code for both our server and in JavaScript.

• We take a look at this example7 to see what we might be able to do. Remember that

in computers, images are made up of pixels, each of which are composed of varying

values of each of three colors, red, green, and blue.

• For the Iron Image, we first notice that we have something called a SimpleImage

object. And we aren’t told this on the page directly, but we can run functions on that

object:

getRed(x, y)

getGreen(x, y)

getBlue(x, y)

# Each of these functions get the value of that color at the x  and y  coordinates of

the SimpleImage  object.

• Likewise, we can call these functions:

setRed(x, y, value)

setGreen(x, y, value)

setBlue(x, y, value)

# These functions set the value of that color at the x  and y  coordinates to value .

• So first, we want to set all the blue and green values to 0 :

var im = new SimpleImage("iron-puzzle.png");

for (x = 0; x < im.getWidth(); x++) {

  for (y = 0; y < im.getHeight(); y++) {

    im.setBlue(x, y, 0);

    im.setGreen(x, y, 0);

  }

}

print(im);

7  http://nifty.stanford.edu/2011/parlante-image-puzzle/

http://nifty.stanford.edu/2011/parlante-image-puzzle/
http://nifty.stanford.edu/2011/parlante-image-puzzle/


Web Programming

9

# The for  loops seem to go over all the x  values from 0  to the width of the image,

and for each of those x  values, go over all the y  values from 0  to the height of

the image, so we are going over each pixel one row at a time.

# So for each of those pixels, we set the blue and green values to 0 .

• Now we want to multiply each red value by 10 and set it back:

var im = new SimpleImage("iron-puzzle.png");

for (x = 0; x < im.getWidth(); x++) {

  for (y = 0; y < im.getHeight(); y++) {

    im.setBlue(x, y, 0);

    im.setGreen(x, y, 0);

    var value = im.getRed(x, y);

    im.setRed(x, y, value * 10);

  }

}

print(im);

# First, we get the red value and save it to a variable called value , and then we set

10 times that to the red value of the image.

• We could make this more elegant by using the value without saving it to a variable:

var im = new SimpleImage("iron-puzzle.png");

for (x = 0; x < im.getWidth(); x++) {

  for (y = 0; y < im.getHeight(); y++) {

    im.setBlue(x, y, 0);

    im.setGreen(x, y, 0);

    im.setRed(x, y, im.getRed(x, y) * 10);

  }

}

print(im);

• We solve the second puzzle similarly:

var im = new SimpleImage("copper-puzzle.png");

for (x = 0; x < im.getWidth(); x++) {

  for (y = 0; y < im.getHeight(); y++) {

    im.setRed(x, y, 0);

    im.setBlue(x, y, im.getBlue(x, y) * 20);

    im.setGreen(x, y, im.getGreen(x, y) * 20);

  }



Web Programming

10

}

print(im);

• Now we’ll learn to use an API for Google Maps with this tutorial8.

• In our C9 workspace, we’ll make a new file called map.html , start our webserver by

running apache50 start .  in our Terminal, and visit the URL that our workspace

has, with /map.html  at the end.

• Now we copy and paste the Hello, World code from the tutorial into our

map.html . But we need something called an API key, which allows us

to access the service. (We signed up for one in advance for the class,

AIzaSyAmk7cP6WPlqLXgIP4mlQKg7RTDVxhKm50 , and we want to paste it into the

code where it reads YOUR_API_KEY .)

• The default location is in Australia, so to relocate that, we’d look up our latitude and

longitude and put it on line 24: center: {lat: -34.397, lng: 150.644}, .

• And to change the map from graphical to satellite, we could read the documentation9

and follow the instructions in setting the map type.

• So we’ve just scratched the surface here, but there are lots of other services provided

to us by APIs, both free and paid, that we might utilize.

• Next time we’ll talk about the technology stack, or what technologies we might use

from back-end to front-end, and finish our time together with a discussion on mobile

app programming.

8  https://developers.google.com/maps/documentation/javascript/tutorial
9  https://developers.google.com/maps/documentation/javascript/maptypes

https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/maptypes
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/maptypes

	Web Programming
	Table of Contents
	Announcements
	Web Programming

