
1

Problem Set 8: Mashup

This is CS50. Harvard Extension School. Spring 2016.

Table of Contents

Objectives ... 2

Recommended Reading ... 2

Academic Honesty ... 2

Reasonable ... 3

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 5

Google Maps ... 6

Google News .. 6

jQuery .. 9

typeahead.js .. 9

Underscore .. 10

Getting Started ... 10

Walkthrough ... 13

import .. 13

index.php ... 14

styles.css ... 14

scripts.js .. 14

update.php .. 20

search.php ... 20

articles.php .. 20

config.php .. 21

helpers.php .. 21

config.json ... 21

What To Do .. 21

config.json ... 21

import .. 21

search.php ... 23

scripts.js .. 24

Problem Set 8: Mashup

2

How to Submit ... 26

Step 1 of 2 .. 26

Step 2 of 2 .. 27

Objectives

• Introduction to JavaScript, Ajax, JSON.

• Exposure to objects and methods.

• Grapple with real-world APIs and libraries.

Recommended Reading

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problem sets is not permitted except to the extent that you may ask classmates and others

for help so long as that help does not reduce to another doing your work for you. Generally

speaking, when asking for help, you may show your code to others, but you may not view

theirs, so long as you and they respect this policy’s other constraints. Collaboration on

quizzes is not permitted at all. Collaboration on the course’s final project is permitted to

the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from the course’s heads. Acts

considered not reasonable by the course are handled harshly. If the course refers some

matter for disciplinary action and the outcome is punitive, the course reserves the right to

impose local sanctions on top of that outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

Problem Set 8: Mashup

3

If you commit some act that is not reasonable but bring it to the attention of the course’s

heads within 72 hours, the course may impose local sanctions that may include an

unsatisfactory or failing grade for work submitted, but the course will not refer the matter

for further disciplinary action except in cases of repeated acts.

Reasonable

• Communicating with classmates about problem sets' problems in English (or some

other spoken language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code at office hours, elsewhere, or

even online, as by viewing, compiling, or running his or her code, even on your own

computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past semesters' quizzes and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own code online so that others might help you identify and

fix a bug.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problem set’s

problems or your own final project.

• Whiteboarding solutions to problem sets with others using diagrams or pseudocode

but not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

Problem Set 8: Mashup

4

• Asking a classmate to see his or her solution to a problem set’s problem before

(re-)submitting your own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problem sets.

• Failing to cite (as with comments) the origins of code or techniques that you discover

outside of the course’s own lessons and integrate into your own work, even while

respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem set’s problem when it is he

or she, and not you, who is struggling to solve it.

• Looking at another individual’s work during a quiz.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problem sets to individuals who might take

this course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problem sets online or elsewhere.

• Splitting a problem set’s workload with another individual and combining your work.

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Submitting work to this course that you intend to use outside of the course (e.g., for a

job) without prior approval from the course’s heads.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem set’s problem and basing your own solution

on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Problem Set 8: Mashup

5

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

All students, whether or not taking the course for a letter grade, must ordinarily submit

this and all other problem sets to be eligible for a satisfactory grade unless granted an

exception in writing by the course’s heads.

Getting Ready

Your (final!) mission for this problem set is to implement "mashup" that integrates Google

Maps with Google News with a MySQL database containing thousands of postal codes,

GPS coordinates, and more. Quite like this here version by the staff!

https://mashup.cs50.net/

Not only can you search for places via the text box up top, you can also click on and

drag the map elsewhere. Scattered across the map, meanwhile, are newspaper icons that,

when clicked, provide links to local news!

You may notice that some markers (and labels) overlap others or are otherwise at the

wrong coordinates. The GeoNames1 geographical database that we’re using is actually

imperfect, whereby some places' coordinates are off. For instance, East Boston isn’t in

Back Bay. And Readville isn’t in Boston Harbor. Not to worry if you see those same

symptoms in your mashup, assuming the source of the problem is indeed the data itself!

Anyhow, how neat! But where to begin?

1 http://www.geonames.org/

https://mashup.cs50.net/
http://www.geonames.org/
http://www.geonames.org/

Problem Set 8: Mashup

6

Google Maps

Odds are you’re already familiar, but surf on over to Google Maps anyway at https://

www.google.com/maps. Input 42.374490, -71.117185 into the search box up top, and

you should find yourself at Harvard. Input 41.3163284, -72.9245318, and you should find

yourself at Yale.

Interesting! It seems Google Maps understands GPS coordinates (i.e., latitude and

longitude). In fact, search for 28.410, -81.584. Perhaps you’d rather be there? (You might

need to zoom out.)

It turns out that Google Maps offers an API that allows you to embed Google’s maps into

your own web apps. Hey, that’s one of the ingredients we need! Go ahead and familiarize

yourself with Google Maps Javascript API2 by perusing the three sections below of its

Developer’s Guide. Read through any sample code carefully, clicking View example

below it, if present, to see the code in action.

• Getting Started3

• Drawing on the Map

Markers4

Info Windows5

Google News

Okay, now we need us some news. If you happen to have a Google Account (e.g., Gmail),

head to https://news.google.com/ and click the Personalize button at top-right. Below

the icon should appear Personalize Google News, down below which is Advanced.

Click the latter, and Add a local section should appear at right. Input, say, Cambridge,

Massachusetts or New Haven, Connecticut into that box, then click Add. You should

find yourself at either of the URLs below?

• https://news.google.com/news/section?cf=all&pz=1&geo=Cambridge,

+Massachusetts&ned=us&redirect=true

2 https://developers.google.com/maps/documentation/javascript/
3 https://developers.google.com/maps/documentation/javascript/tutorial
4 https://developers.google.com/maps/documentation/javascript/markers
5 https://developers.google.com/maps/documentation/javascript/infowindows

https://www.google.com/maps
https://www.google.com/maps
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/markers
https://developers.google.com/maps/documentation/javascript/infowindows
https://news.google.com/
https://news.google.com/news/section?cf=all&pz=1&geo=Cambridge,+Massachusetts&ned=us&redirect=true
https://news.google.com/news/section?cf=all&pz=1&geo=Cambridge,+Massachusetts&ned=us&redirect=true
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/markers
https://developers.google.com/maps/documentation/javascript/infowindows

Problem Set 8: Mashup

7

• https://news.google.com/news/section?cf=all&pz=1&geo=New+Haven,

+Connecticut&ned=us&redirect=true

Not to worry if you don’t have a Google Account. Just head straight to either URL.

Interesting, it looks like our input is now the value of an HTTP parameter, geo , though

there’s a bunch of other parameters too. (Know that + is one way a browser can encode

a space in a URL. Another way is with %20 .) One at a time, delete each of those other

key-value pairs plus an ampersand (e.g., first cf=all& , then pz=1& , then &ned=us ,

then &redirect=true , hitting Enter after each deletion so as to reload the page via a

shorter and shorter URL. You should find that Google still returns news for Cambridge or

New Haven even when the URL is either of the below?

• https://news.google.com/news/section?geo=Cambridge,+Massachusetts

• https://news.google.com/news/section?geo=New+Haven,+Connecticut

Nice! +1 for trial and error. Now try changing the value of geo to, say, 02138 or 06511

and then hit Enter again. You should find yourself at the URL below? The articles might

change (since Cambridge and New Haven have more than one postal code each), but the

news should still be about Cambridge or New Haven?

• https://news.google.com/news/section?geo=02138

• https://news.google.com/news/section?geo=06511

Nice. Though the page you’re looking at, of course, is written in HTML. And all we want,

if the staff’s solution is any indication, is a bulleted list of articles' titles and links. How to

get those without "scraping" this page’s (surely complicated) HTML? Scroll down to the

page’s bottom and look for RSS. Click that link, and you should find yourself at one of

the URLs below?

• https://news.google.com/news?cf=all&hl=en&pz=1&ned=us&geo=02138&output=rss

• https://news.google.com/news?cf=all&hl=en&pz=1&ned=us&geo=06511&output=rss

As before, delete any parameters that don’t feel core to the mission at hand, leaving only,

say, geo and, now, output . You should find yourself at one of the (still fully functional)

URLs below.

https://news.google.com/news/section?cf=all&pz=1&geo=New+Haven,+Connecticut&ned=us&redirect=true
https://news.google.com/news/section?cf=all&pz=1&geo=New+Haven,+Connecticut&ned=us&redirect=true
https://news.google.com/news/section?geo=Cambridge,+Massachusetts
https://news.google.com/news/section?geo=New+Haven,+Connecticut
https://news.google.com/news/section?geo=02138
https://news.google.com/news/section?geo=06511
https://news.google.com/news?cf=all&hl=en&pz=1&ned=us&geo=02138&output=rss
https://news.google.com/news?cf=all&hl=en&pz=1&ned=us&geo=06511&output=rss

Problem Set 8: Mashup

8

• https://news.google.com/news/feeds?geo=02138&output=rss

• https://news.google.com/news/feeds?geo=06511&output=rss

Deleting those parameters probably isn’t necessary (and, who knows, their absence might

break things eventually), but whittling a URL down to its essence does feel like better

design, so let’s stick with simple.

Now, what’s all this markup that’s now on your screen? It looks a bit like HTML, but you’re

actually looking at an "RSS feed," a flavor of XML (a tag-based markup language). For

quite some time, RSS was all the rage insofar as it enabled websites to "syndicate" articles

in a standard format that "RSS readers" could read. RSS isn’t quite as hip anymore these

days, but it’s still a terrific find for us because it’s "machine-readable". Because it adheres

to a standard format, we can parse it (pretty easily!) with software. Here’s what an RSS

feed generally looks like (sans actual data):

<rss version="2.0">

 <channel>

 <title>...</title>

 <description>...</description>

 <link>...</link>

 <item>

 <guid>...</guid>

 <title>...</title>

 <link>...</link>

 <description>...</description>

 <category>...</category>

 <pubDate>...</pubDate>

 </item>

 ...

 </channel>

</rss>

In other words, an RSS feed contains a root element called rss , the child of which

is an element called channel . Inside of channel are elements called title ,

description , and link , followed by one or more elements called item , each of

which represents an article (or blog post or the like). Each item , meanwhile, contains

elements called guid , title , link , description , category , and pubDate .

Of course, between most of these start tags and end tags should be actual data (e.g., an

article’s actual title). For more details, see http://cyber.law.harvard.edu/rss/rss.html.

https://news.google.com/news/feeds?geo=02138&output=rss
https://news.google.com/news/feeds?geo=06511&output=rss
http://cyber.law.harvard.edu/rss/rss.html

Problem Set 8: Mashup

9

Ultimately, we’ll parse RSS feeds from Google News using PHP and then return articles'

titles and links to our web app via Ajax as JSON. But more on that in a bit.

jQuery

Recall that jQuery6 is a super-popular JavaScript library that "makes things like HTML

document traversal and manipulation, event handling, animation, and Ajax much simpler

with an easy-to-use API that works across a multitude of browsers." To be fair, though, it’s

not without a learning curve. Read through a few sections of jQuery’s documentation.

• $(document).ready()7

• Selecting Elements8

• jQuery’s Ajax-Related Methods9

jQuery’s documentation isn’t the most user-friendly, though, so odds are you’ll ultimately

find Google10 and Stack Overflow11 handier resources.

Recall that $ is usually (though not always) an alias for a global object that’s otherwise

called jQuery .

typeahead.js

Now take a look at a demo of Twitter’s typeahead.js library, a jQuery "plugin" that adds

support for autocompletion to HTML text fields. See The Basics specifically:

http://twitter.github.io/typeahead.js/examples/

And now skim the documentation for version 0.10.5 of that same library, which (surprise,

surprise) isn’t as user-friendly as would be ideal. But, again, not to worry.

https://gist.github.com/dmalan/8abe1025cfe5121614b8

6 http://jquery.com/
7 http://learn.jquery.com/using-jquery-core/document-ready/
8 http://learn.jquery.com/using-jquery-core/selecting-elements/
9 http://learn.jquery.com/ajax/jquery-ajax-methods/
10 https://www.google.com/
11 http://stackoverflow.com/

http://jquery.com/
http://learn.jquery.com/using-jquery-core/document-ready/
http://learn.jquery.com/using-jquery-core/selecting-elements/
http://learn.jquery.com/ajax/jquery-ajax-methods/
https://www.google.com/
http://stackoverflow.com/
http://twitter.github.io/typeahead.js/examples/
https://gist.github.com/dmalan/8abe1025cfe5121614b8
http://jquery.com/
http://learn.jquery.com/using-jquery-core/document-ready/
http://learn.jquery.com/using-jquery-core/selecting-elements/
http://learn.jquery.com/ajax/jquery-ajax-methods/
https://www.google.com/
http://stackoverflow.com/

Problem Set 8: Mashup

10

Incidentally, the latest version of Twitter’s library is actually 0.11.1, but it’s buggy. :-(

Underscore

Finall, skim the documentation for Underscore12, another popular JavaScript library that

offers functions that many folks wish were built into JavaScript itself! In particular, take

note of template . Admittedly, this documentation isn’t very user-friendly either, so not

to worry if usage is non-obvious for the moment.

• http://underscorejs.org/#template

Much like jQuery uses $ as its symbol (because it looks cool), Underscore uses _ is its

symbol. For instance _.template means that Underscore has a method (i.e., function)

called template .

Getting Started

Phew, that was a lot! But think of it this way: that’s a lot of functionality you don’t need to

implement yourself! Indeed, implementing autocompletion alone could be a project unto

itself. We just need to figure out how to wire (or, if you will, "mash") all of these components

together in order to build our own amazing web app.

Anyhow! Log into CS50 IDE13 and, open a terminal window, and execute update50 to

ensure that your workspace is up-to-date!

Then, within CS50 IDE, download this problem set’s distribution code from http://

cdn.cs50.net/2015/fall/psets/8/pset8/pset8.zip. Unzip it into ~/workspace , so that you

ultimately have a pset8 directory in ~/workspace . Then delete pset8.zip . And

then download http://cdn.cs50.net/2015/fall/psets/8/pset8/pset8.sql into ~/workspace

as well.

(Remember how?)

Next, execute ls within ~/workspace/pset8 , and you should see three

subdirectories: bin , includes , and public . Ensure that permissions are as follows:

12 http://underscorejs.org/
13 https://cs50.io/

http://underscorejs.org/
http://underscorejs.org/#template
https://cs50.io/
http://cdn.cs50.net/2015/fall/psets/8/pset8/pset8.zip
http://cdn.cs50.net/2015/fall/psets/8/pset8/pset8.zip
http://cdn.cs50.net/2015/fall/psets/8/pset8/pset8.sql
http://underscorejs.org/
https://cs50.io/

Problem Set 8: Mashup

11

• 700

bin

bin/import

includes

vendor

• 711

public

public/css

public/fonts

public/img

public/js

• 600

includes/*.php

public/*.php

• 644

public/css/*

public/fonts/*

public/img/*

public/index.html

public/js/*

(Remember how? Remember why?)

Next, ensure that Apache isn’t already running (with some other root) by executing the

below.

apache50 stop

Then (re)start Apache with the below so that it uses ~/workspace/pset8/public as

its root.

Problem Set 8: Mashup

12

apache50 start ~/workspace/pset8/public

Next, ensure MySQL is running by executing the below.

mysql50 start

Alright, time for a test! In another tab, visit https://ide50-username.cs50.io/ ,

where username is your own username.

You should find yourself at a map (without much of anything going on)! (If you instead see

Forbidden, odds are you missed a step earlier; best to try all those chmod steps again.)

Feel free to click on the map and drag it around. Or try searching for your home town via

the text box up top. It won’t find it yet! Indeed, the mashup itself doesn’t do much just yet!

Next, head to https://ide50-username.cs50.io/phpmyadmin , where

username is again your own username, to access phpMyAdmin. Log in if prompted.

(Recall that you can the # icon toward CS50 IDE’s top-right corner to see your MySQL

Username and your MySQL Password.) You should then find yourself at phpMyAdmin’s

main page.

Within CS50 IDE, now, open up pset8.sql , which you downloaded earlier. You should

see a whole bunch of SQL statements. Highlight them all, select Edit > Copy (or hit control-

c), then return to phpMyAdmin. Click phpMyAdmin’s SQL tab, and paste everything you

copied into that page’s big text box (which is below Run SQL query/queries on server

"127.0.0.1"). Skim what you just pasted to get a sense of the commands you’re about to

execute, then click Go. You should then see a greenish banner indicating success (i.e.,

1 row affected). In phpMyAdmin’s top-left corner, you should now see link to a database

called pset8, beneath which is a link to a table called places. (If you don’t, try reloading the

page.) If you click places, you’ll find (gasp!) that this table is empty. But we have defined

its "schema" (i.e., structure) for you. Click phpMyAdmin’s Structure tab to see.

Let’s now download the data that we’ll ultimately import into this table. In a separate tab,

head to http://download.geonames.org/export/zip/, where you’ll see a whole bunch of ZIP

files, "data dumps" (in .txt format) from the GeoNames14 geographical database, which

"covers all countries and contains over eight million placenames that are available for

14 http://www.geonames.org/

http://download.geonames.org/export/zip/
http://www.geonames.org/
http://www.geonames.org/

Problem Set 8: Mashup

13

download free of charge." Control- or right-click US.zip and select Copy Link Address

(or your browser’s equivalent), and then download that ZIP into ~/workspace within

CS50 IDE, as by typing wget into a terminal and then pasting the address you just

copied. Alternatively, you’re welcome to download another country’s data, though this

spec will assume the US for the sake of discussion. See http://en.wikipedia.org/wiki/

ISO_3166-1_alpha-2#Officially_assigned_code_elements if unsure how to interpret the

ZIP files' 2-letter "base names." (They’re "ISO 3166-1 alpha-2" country codes.)

Next, unzip US.zip , which should yield US.txt . (Remember how?) And then delete

US.zip .

Per http://download.geonames.org/export/zip/readme.txt, US.txt is quite like a CSV file

except that fields are delimited with \t (a tab character) instead of a comma. To see the

file’s contents, you’re welcome to open it within CS50 IDE, but take care not to change it.

Walkthrough

Shall we take a stroll? Just keep in mind that we’ve made a few tweaks to the distribution

code since this walkthrough was shot:

• We’ve removed constants.php and functions.php from includes .

• We’ve added helpers.php , which implements one function`, lookup , that’s called

in articles.php .

• We’ve added vendor , which contains CS50’s PHP library.

• We’ve added config.json with which you can configure CS50’s PHP library to

connect to a database.

Alrighty, let’s take that stroll!

https://www.youtube.com/watch?v=ASA8fAEerNo

And now a closer look at the distribution code.

import

Navigate your way to ~/workspace/pset8/bin and open up import . Not much

there yet! Just a shebang and TODO . It’s in this file that you’ll ultimately write a PHP script

that iterates over the lines in US.txt , INSERT ing data from each into places , that

MySQL table. But more on that later.

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
http://download.geonames.org/export/zip/readme.txt
https://www.youtube.com/watch?v=ASA8fAEerNo

Problem Set 8: Mashup

14

index.php

Next navigate your way to ~/workspace/pset8/public and open up index.html .

Ah, there we go. If you look at the page’s head , you’ll see all those CSS and JavaScript

libraries we’ll be using (plus some others). Included in HTML comments are URLs for each

library’s documentation.

Next take a look at the page’s body , inside of which is div with a unique id of map-

canvas . It’s into that div that we’ll be injecting a map. Below that div , meanwhile, is

a form , inside of which is an input of type text with a unique id of q that we’ll

use to take input from users.

styles.css

Now navigate your way to ~/workspace/pset8/public/css and open up

styles.css . In there is a bunch of CSS that implements the mashup’s default UI. Feel

free to tinker (i.e., make changes, save the file, and reload the page in Chrome) to see

how everything works, but best to undo any such changes for now before forging ahead.

scripts.js

Navigate next to ~/workspace/pset8/public/js and open up scripts.js . Ah,

the most interesting file yet! It’s this file that implements the mashup’s "front-end" UI, relying

on Google Maps and some "back-end" PHP scripts for data (that we’ll soon explore). Let’s

walk through this one.

Atop the file are some global variables:

• map , which will contain a reference (i.e., a pointer of sorts) to the map we’ll soon be

instantiating;

• markers , an array that will contain references to any markers we add atop the map;

and

• info , a reference to an "info window" in which we’ll ultimately display links to articles.

Below those global variables is an anonymous function that will be called automatically

by jQuery when the mashup’s DOM is fully loaded (i.e., when index.html and all its

assets, CSS and JavaScript especially, have been loaded into memory).

Problem Set 8: Mashup

15

Atop this anonymous function is a definition of styles , an array of two objects that we’ll

use to configure our map, as per https://developers.google.com/maps/documentation/

javascript/styling. Recall that [and] denote an array, while { and } denote an object.

The (very pretty) indentation you see is just a stylistic convention to which it’s probably

ideal to adhere in your code as well.

Below styles is options , another collection of keys and values that will ultimately

be used to configure the map further, as per https://developers.google.com/maps/

documentation/javascript/reference#MapOptions.

Next we define canvas , by using a bit of jQuery to get the DOM node whose unique

id is map-canvas . Whereas $("#map-canvas") returns a jQuery object (that has a

whole bunch of functionality built-in), $("#map-canvas").get(0) returns the actual,

underlying DOM node that jQuery is just wrapping.

Perhaps the most powerful line yet is the next one in which we assign map (that global

variable) a value. With

new google.maps.Map(canvas, options);

we’re telling the browser to instantiate a new map, injecting it into the DOM node specified

by canvas), configured per options .

The line below that one, meanwhile, tells the browser to call configure (another function

we’ve written) as soon as the map is loaded.

addMarker

Uh oh, a TODO . Ultimately, given a place (i.e., postal code and more), this function will

need to add a marker (i.e., icon) to the map.

configure

This function, meanwhile, picks up where that anonymous function left off. Recall that

configure is called as soon as the map has been loaded. Within this function we

configure a number of "listeners," specifying what should happen when we "hear" certain

events. For instance,

https://developers.google.com/maps/documentation/javascript/styling
https://developers.google.com/maps/documentation/javascript/styling
https://developers.google.com/maps/documentation/javascript/reference#MapOptions
https://developers.google.com/maps/documentation/javascript/reference#MapOptions

Problem Set 8: Mashup

16

google.maps.event.addListener(map, "dragend", function() {

 update();

});

indicates that we want to listen for a dragend event on the map, calling the anonymous

function provided when we hear it. That anonymous function, meanwhile, simply calls

update (another function we’ll soon see). Per https://developers.google.com/maps/

documentation/javascript/reference#Map, dragend is "fired" (i.e., broadcasted) "when

the user stops dragging the map."

Similarly do we listen for zoom_changed , which is fired "when the map zoom property

changes" (i.e., the user zooms in or out).

On the other hand, upon hearing dragstart , we ultimately call removeMarkers so

that all markers disappear temporarily as a user drags the map, thereby avoiding the

appearance of a flicker that might otherwise happen as markers are removed and then re-

added after the maps bounds (i.e., corners) have changed.

Below those listeners is our configuration of that typeahead plugin. Take another look

at https://github.com/twitter/typeahead.js/blob/master/doc/jquery_typeahead.md if unsure

what autoselect , highlight , and minLength do here. Most importantly, though,

know that the value of source (i.e., search) is the function that the plugin will call as

soon as the user starts typing so that the function can respond with an array of search

results based on the user’s input. For instance, if the user types foo into that text box,

the function should ultimately return an array of all places in your database that somehow

match foo . How to perform those matches will ultimately be left to you! The value of

templates , meanwhile, is an object with two keys: empty , whose value is the HTML

that should be displayed when search comes back empty (i.e., returns an array of length

0), and suggestion , whose value is a "template" that will be used to format each entry

in the plugin’s dropdown menu. Right now, that template is simply <p>TODO</p> , which

means that every entry in that dropdown will literally say TODO . Ultimately, you’ll want to

change that tvalue to something like

<p><%- place_name %>, <%- admin_name1 %></p>

so that the plugin dynamically inserts those values (place_name and admin_name1)

or some others for you. In contrast to <%= , which Underscore also supports, the <%-

https://developers.google.com/maps/documentation/javascript/reference#Map
https://developers.google.com/maps/documentation/javascript/reference#Map
https://github.com/twitter/typeahead.js/blob/master/doc/jquery_typeahead.md

Problem Set 8: Mashup

17

ensures that the value will be escaped, a la PHP’s htmlspecialchars , per http://

underscorejs.org/#template.

Next notice these lines, which are admittedly a bit cryptic at first glance:

$("#q").on("typeahead:selected", function(eventObject, suggestion, name) {

 map.setCenter({lat: parseFloat(suggestion.latitude), lng:

 parseFloat(suggestion.longitude)});

 update();

});

These lines are saying that if the HTML element whose unique id is q fires an event

called typeahead:selected , as will happen when the user selects an entry from the

plugin’s dropdown menu, we want jQuery to call an anonymous function whose second

argument, suggestion , will be an object that represents the entry selected. Within that

object must be at least two properties: latitude and longitude . We’ll then call

setCenter in order to re-center the map at those coordinates, after which we’ll call

update to update any markers.

Below those lines, meanwhile, are these:

$("#q").focus(function(eventData) {

 hideInfo();

});

If you consult http://api.jquery.com/focus/, hopefully those lines will make sense?

Below those are these:

document.addEventListener("contextmenu", function(event) {

 event.returnValue = true;

 event.stopPropagation && event.stopPropagation();

 event.cancelBubble && event.cancelBubble();

}, true);

Unfortunately, Google Maps disables ctrl- and right-clicks on maps, which interferes with

using Chrome’s (amazingly useful) Inspect Element feature, so these lines re-enable

those.

http://underscorejs.org/#template
http://underscorejs.org/#template
http://api.jquery.com/focus/

Problem Set 8: Mashup

18

Last up in configure is a call to update (which we’ll soon look at) and a call to focus ,

this time with no arguments. See http://api.jquery.com/focus/ for why!

hideInfo

Thankfully, a short function! This one just calls close on our global info window.

removeMarkers

Hm, a TODO . Ultimately, this function will need to remove any and all markers from the

map!

search

This function is called by the typeahead plugin every time the user changes the mashup’s

text box, as by typing or deleting a character. The value of the text box (i.e., whatever the

user has typed in total) is passed to search as query . And the plugin also passes to

search a second argument, cb , a "callback" which is a function that search should

call as soon as it’s done searching for matches. In other words, this passing in of cb

empowers search to be "asynchronous," whereby it will only call cb as soon as it’s

ready, without blocking any of the mashup’s other functionality. Accordingly, search

uses jQuery’s getJSON method to contact search.php asynchronously, passing in

one parameter, geo , the value of which is query . Once search.php responds

(however many milliseconds or seconds later), the anonymous function passed to done

will be called and passed data , whose value will be whatever JSON that search.php

has emitted. (Though if something goes wrong, fail is instead called.) Finally called is

cb , to which search passes that same data so that the plugin can iterate over the

places therein (assuming search.php found matches) in order to update the plugin’s

drop-down. Phew.

Notice that we’re using getJSON 's "Promise" interface, per http://api.jquery.com/

jquery.getjson/. Rather than pass an anonymous function directly to getJSON (to

be called upon success), we’re instead "chaining" together calls to getJSON , done

(whose argument, an anonymous function, will be called upon success), and fail

(whose argument, another anonymous function, will be called upoon failure). See http://

api.jquery.com/jquery.ajax/ for some additional details. And see http://davidwalsh.name/

write-javascript-promises for an explanation of promises themselves.

http://api.jquery.com/focus/
http://api.jquery.com/jquery.getjson/
http://api.jquery.com/jquery.getjson/
http://api.jquery.com/jquery.ajax/
http://api.jquery.com/jquery.ajax/
http://davidwalsh.name/write-javascript-promises
http://davidwalsh.name/write-javascript-promises

Problem Set 8: Mashup

19

Notice, too, that we’re using console.log much like you might use printf in C

to log errors for debugging’s sake. You may want to do so as well! Just realize that

console.log will log messages to the browser’s console (i.e., the Console tab of

Chrome’s developer tools), not to your terminal window. See https://developer.mozilla.org/

en-US/docs/Web/API/Console.log for tips.

showInfo

This function opens the info window at a particular marker with particular content (i.e.,

HTML). Though if only one argument is supplied (marker), showInfo simply displays a

spinning icon (which is just an animated GIF). Notice, though, how this function is creating

a string of HTML dynamically, thereafter passing it to setContent . Perhaps keep that

technique in mind elsewhere!

update

Last up is update , which first determines the map’s current bounds, the coordinates of its

top-right (northeast) and bottom-left (southwest) corners. It then passes those coordinates

to update.php via a GET request (underneath the hood of getJSON) a la:

GET /update.php?

ne=37.45215513235332%2C-122.03830380859375&q=&sw=37.39503397352173%2C-122.28549619140625

 HTTP/1.1

The %2C are just commas that have been "URL-encoded." Realize that our use

of commas is arbitary; we’re expecting update.php to parse and extract latitudes

and longitudes from these parameters. We could have simply passed in four distinct

parameters, but we felt it was semantically cleaner to pass in just one parameter per

corner.

As we’ll soon see, update.php is designed to return a JSON array of places that fall

within the map’s current bounds (i.e., cities within view). After all, with those two corners

alone can you define a rectangle, which is exactly what the map is!

As soon as update.php responds, the anonymous function passed to done is called

and passed data , the value of which is the JSON emitted by update.php . (Though if

something goes wrong, fail is instead called.) That anonymous function first removes

https://developer.mozilla.org/en-US/docs/Web/API/Console.log
https://developer.mozilla.org/en-US/docs/Web/API/Console.log

Problem Set 8: Mashup

20

all markers from the map and then iteratively adds new markers, one for each place (i.e.,

city) in the JSON.

Phew and phew!

update.php

Now navigate your way to ~/workspace/pset8/public and open up update.php .

Ah, okay, here’s the "back-end" script that outputs a JSON array of up to 10 places (i.e.,

cities) that fall within the specified bounds (i.e., within the rectangle defined by those

corners). You won’t need to make changes to this file, but do read through it line by

line, Googling any function with which you’re not familiar. Of particular interest should be

preg_match , which allows you to compare strings against "regular expressions." While

cryptic at first glance, our two calls to preg_match in update.php are simply ensuring

that both sw and ne are comma-separated latitudes and longitudes.

Oh, and yes, this file’s SQL queries assume that the world is flat for simplity.

search.php

Next open up search.php . Ah, not much in there now. Just an eventual TODO !

articles.php

Now open up articles.php . This one we’ve implemented for you. Notice how it

expects a GET parameter called geo , which it passes to lookup (which is defined in

helpers.php) for localized news, thereafter returning a JSON array of objects, each of

which has two keys: link and title .

You can actually see this file in action. Go ahead and visit URLs like

• https://ide50-username.cs50.io/articles.php?geo=Cambridge,+Massachusetts

• https://ide50-username.cs50.io/articles.php?geo=02138

or

• https://ide50-username.cs50.io/articles.php?geo=New+Haven,+Connecticut

https://ide50-username.cs50.io/articles.php?geo=Cambridge,+Massachusetts
https://ide50-username.cs50.io/articles.php?geo=02138
https://ide50-username.cs50.io/articles.php?geo=New+Haven,+Connecticut

Problem Set 8: Mashup

21

• https://ide50-username.cs50.io/articles.php?geo=06511

where username is your own username. You should see (pretty-printed) JSON arrays

of articles!

config.php

Let’s now take a quick peek at the file that all those other PHP files have required. Navigate

your way to ~/workspace/pset8/includes and open up config.php . Ah, a file

quite like Problem Set 7’s own config.php , albeit simpler. It even loads CS50’s PHP

library, along with helpers.php .

helpers.php

In this file we’ve defined just one function, lookup . Unlike Problem Set 7’s lookup ,

though, this version of lookup queries Google News for articles for a particular

geography. No need to understand every one this file’s lines, but do review its comments!

config.json

Next open up config.json . Ah, another familiar sight, albeit with for database called

pset8 .

What To Do

Alright, it’s time to mash Google’s two APIs together.

config.json

First, tackle those TODO s inside of config.json , just as you did for Problem Set 7.

import

Next, recall that places , that MySQL table you imported earlier, is currently empty. The

data that needs to be in it, meanwhile, is in US.txt .

Write, in import , a command-line script in PHP that accepts as a command-line

argument the path to a file (which can be assumed to be formatted like US.txt) that

https://ide50-username.cs50.io/articles.php?geo=06511

Problem Set 8: Mashup

22

iterates over the file’s lines, inserting each as new row in places . We leave the overall

design of this script to you, but be sure to perform rigorous error-checking, leveraging

file_exists15, is_readable16, and/or similar. Odds are you’ll find fopen17,

fgetcsv18, and fclose19 of particular help, along with CS50::query from CS50’s

PHP library. Note that fgetcsv takes an optional third argument that allows you to

override the default delimiter from a comma to something else.

To run this script, you’ll want to execute a command like

./import /path/to/US.txt

where /path/to/US.txt is indeed the (relative or absolute) path to that file.

Odds are the first several runs of your script won’t be quite right, so you’ll likely want to

empty places between runs, as by executing

TRUNCATE places

in phpMyAdmin’s SQL tab or by clicking Empty the table (TRUNCATE) in phpMyAdmin’s

Operations tab. If you take the latter approach, be sure that you’ve first selected places

(as by clicking it in phpMyAdmin’s lefthand column) so that you don’t truncate some other

table. And be sure not to click Delete the table (DROP), else you’ll have to re-import

pset8.sql and re-create any changes you’d made.

Either now or later on, you should probably add one or more additional indexes to places

in order to expedite searches (for search.php). See http://dev.mysql.com/doc/

refman/5.5/en/mysql-indexes.html and http://dev.mysql.com/doc/refman/5.5/en/fulltext-

search.html (and Google!) for tips. (We defined places in pset8.sql as using a

MyISAM "engine" so that a FULLTEXT index is an option.)

Even though data can sometimes be imported in bulk via phpMyAdmin’s Import tab, you

must indeed (in case wondering!) implement import as prescribed!

15 http://php.net/manual/en/function.file-exists.php
16 http://php.net/manual/en/function.is-readable.php
17 http://php.net/manual/en/function.fopen.php
18 http://php.net/manual/en/function.fgetcsv.php
19 http://php.net/manual/en/function.fclose.php

http://php.net/manual/en/function.file-exists.php
http://php.net/manual/en/function.is-readable.php
http://php.net/manual/en/function.fopen.php
http://php.net/manual/en/function.fgetcsv.php
http://php.net/manual/en/function.fclose.php
http://dev.mysql.com/doc/refman/5.5/en/mysql-indexes.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-indexes.html
http://dev.mysql.com/doc/refman/5.5/en/fulltext-search.html
http://dev.mysql.com/doc/refman/5.5/en/fulltext-search.html
http://php.net/manual/en/function.file-exists.php
http://php.net/manual/en/function.is-readable.php
http://php.net/manual/en/function.fopen.php
http://php.net/manual/en/function.fgetcsv.php
http://php.net/manual/en/function.fclose.php

Problem Set 8: Mashup

23

search.php

Implement search.php in such a way that it outputs a JSON array of objects, each of

which represents a row from places that somehow matches the value of geo . The

value of geo , passed into search.php as a GET parameter, meanwhile, might be

a city, state, and/or postal code. We leave it to you to decide what constitutes a match

and, therefore, which rows to SELECT . Odds are you’ll find SQL’s LIKE and/or MATCH

keywords helpful.

For instance, consider the query below.

CS50::query("SELECT * FROM places WHERE postal_code = ?", $_GET["geo"])

Unfortunately, that query requires that a user’s input be exactly equal to a postal code (per

the =), which isn’t all that compelling for autocomplete. How about this one instead?

CS50::query("SELECT * FROM places WHERE postal_code LIKE ?", $_GET["geo"] .

 "%")

Notice how this query appends % to the user’s input, which happens to be SQL’s

"wildcard" character that means "match any number of characters." The effect is that this

query will return rows whose postal codes match whatever the user typed followed by any

number of other characters. In other words, any of 0 , 02 , 021 , 0213 , and 02138

might return rows, as might any of 0 , 06 , 065 , 0651 , and 06511 .

Finally, consider a query like the below.

CS50::query("SELECT * FROM places WHERE MATCH(postal_code, place_name)

 AGAINST (?)", $_GET["geo"])

This query searches not only on postal_code but also on place_name , but it leaves

it to MySQL to figure out how. It assumes, though, that you’ve defined a FULLTEXT

index jointly on postal_code and place_name , which you can do via phpMyAdmin’s

Structure tab. (See if you can determine how!)

Odds are you won’t want to use any of these queries outright, instead deciding for yourself

what kind of searches to support and what fields to search!

Problem Set 8: Mashup

24

As before, see http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html

and http://dev.mysql.com/doc/refman/5.5/en/fulltext-search.html for some guidance as

well, though Google and Stack Overflow might yield more helpful tips.)

To test search.php , even before your text box is operational, simply visit URLs like

• https://ide50-username.cs50.io/search.php?geo=Cambridge,Massachusetts,US

• https://ide50-username.cs50.io/search.php?geo=Cambridge,+Massachusetts

• https://ide50-username.cs50.io/search.php?geo=Cambridge,+MA

• https://ide50-username.cs50.io/search.php?geo=Cambridge+MA

• https://ide50-username.cs50.io/search.php?geo=02138

or

• https://ide50-username.cs50.io/search.php?geo=New+Haven,Connecticut,US

• https://ide50-username.cs50.io/search.php?geo=New+Haven,+Massachusetts

• https://ide50-username.cs50.io/search.php?geo=New+Have,+MA

• https://ide50-username.cs50.io/search.php?geo=New+Haven+MA

• https://ide50-username.cs50.io/search.php?geo=06511

and other such variants, where username is your own username, to see if you get back

the JSON you expect (and not, say, some big, orange error!). Again, though, we leave it

to you to decide just how tolerate search.php will be of abbreviations, punctuation, and

the like. The more flexible, though, the better! Try to implement features that you yourself

would expect as a user!

Feel free to tinker with the staff’s solution at https://mashup.cs50.net/, inspecting its HTTP

requests via Chrome’s Network tab as needed, if unsure how your own code should work!

scripts.js

First, toward the top of scripts.js , you’ll see an anonymous function, inside of which

is a definition of options , an object, one of whose keys is center , the value of which

is an object with two keys of its own, lat , and lng . Per the comment alongside that

object, your mashup’s map is currently centered on Stanford, California. (D’oh.) Change

the coordinates of your map’s center to Cambridge (42.3770, -71.1256) or New Haven

http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html
http://dev.mysql.com/doc/refman/5.5/en/fulltext-search.html
https://ide50-username.cs50.io/search.php?geo=Cambridge,Massachusetts,US
https://ide50-username.cs50.io/search.php?geo=Cambridge,+Massachusetts
https://ide50-username.cs50.io/search.php?geo=Cambridge,+MA
https://ide50-username.cs50.io/search.php?geo=Cambridge+MA
https://ide50-username.cs50.io/search.php?geo=02138
https://ide50-username.cs50.io/search.php?geo=New+Haven,Connecticut,US
https://ide50-username.cs50.io/search.php?geo=New+Haven,+Massachusetts
https://ide50-username.cs50.io/search.php?geo=New+Have,+MA
https://ide50-username.cs50.io/search.php?geo=New+Haven+MA
https://ide50-username.cs50.io/search.php?geo=06511
https://mashup.cs50.net/

Problem Set 8: Mashup

25

(41.3184, -72.9318) or anywhere else! (Though be sure to choose coordinates in the US

if you downloaded US.txt !) Once you save your changes and reload your map, you

should find yourself there! Zoom out as needed to confirm visually.

As before, feel free to tinker with the staff’s solution at https://mashup.cs50.net/, inspecting

its HTTP requests via Chrome’s Network tab as needed, if unsure how your own code

should work!

configure

Now that search.php and your text box are (hopefully!) working, modify the value of

suggestion in configure , the function in scripts.js , so that it displays matches

(i.e., place_name , admin_name1 , and/or other fields) instead of TODO . Recall that

a value like

<p><%- place_name %>, <%- admin_name1 %></p>

might do the trick, perhaps coupled with some CSS.

addMarker

Implement addMarker in scripts.js in such a way that it adds a marker

for place on the map, where place is a JavaScript object that represents

a row from places , your MySQL table. See https://developers.google.com/maps/

documentation/javascript/markers for tips. But also see http://google-maps-utility-library-

v3.googlecode.com/svn/tags/markerwithlabel/1.1.9/ for an alternative to Google’s own

markers, which add support for labels beneath markers. (Recall that we’re already loading

markerwithlabel_packed.js for you in index.html .)

When a marker is clicked, it should trigger the mashup’s info window to open, anchored

at that same marker, the contents of which should be an unordered list of links to article

for that article’s location (unless articles.php outputs an empty array)!

Again, not to worry if some of your markers (or labels) overlap others, assuming such is

the result of imperfections in US.txt and not your own code!

If you’d like to customize your markers' icon, see https://developers.google.com/maps/

documentation/javascript/markers#simple_icons. For the URLs of icons built-into Google

https://mashup.cs50.net/
https://developers.google.com/maps/documentation/javascript/markers
https://developers.google.com/maps/documentation/javascript/markers
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerwithlabel/1.1.9/
http://google-maps-utility-library-v3.googlecode.com/svn/tags/markerwithlabel/1.1.9/
https://developers.google.com/maps/documentation/javascript/markers#simple_icons
https://developers.google.com/maps/documentation/javascript/markers#simple_icons

Problem Set 8: Mashup

26

Maps, see http://www.lass.it/Web/viewer.aspx?id=4. For third-party icons, see http://

mapicons.nicolasmollet.com/category/markers/.

removeMarkers

Implement removeMarkers in such a way that it removes all markers from the map.

Odds are you’ll need addMarker to modify that global variable called markers in order

for removeMarkers to work its own magic!

personal touch

Last but not least, add at least one personal touch to your mashup, altering its aesthetics

or adding some feature that (ideally!) no classmate has. Any touch that compels you to

learn (or Google!) at least one new technique is of reasonable scope.

How to Submit

Step 1 of 2

1. When ready to submit, "export" your MySQL database (i.e., save it into a text file) by

executing the commands below, where username is your own username, pasting

your MySQL password when prompted for a password. (Recall that you can see your

MySQL password by clicking the # icon toward CS50 IDE’s top-right corner.) For

security, you won’t see the password as you paste it.

cd ~/workspace/pset8

mysqldump -u username -p pset8 > pset8.sql

If you type ls thereafter, you should see that you have a new file called pset8.sql

in ~/workspace/pset8 . (If you realize later that you need to make a change to your

database and re-export it, you can delete pset8.sql with rm pset8.sql , then

re-export as before.)

2. Toward CS50 IDE’s top-left corner, within its "file browser" (not within a terminal

window), control-click or right-click your pset8 folder and then select Download. You

should find that your browser has downloaded pset8.tar.gz , a "gzipped tarball"

that’s similar in spirit to a ZIP file.

http://www.lass.it/Web/viewer.aspx?id=4
http://mapicons.nicolasmollet.com/category/markers/
http://mapicons.nicolasmollet.com/category/markers/

Problem Set 8: Mashup

27

3. In a separate tab or window, log into CS50 Submit20, logging in if prompted.

4. Click Submit toward the window’s top-left corner.

5. Under Problem Set 8 on the screen that appears, click Upload New Submission.

6. On the screen that appears, click Add files…. A window entitled Open Files should

appear.

7. Navigate your way to pset8.tar.gz . Odds are it’s in your Downloads folder or

wherever your browser downloads files by default. Once you find pset8.tar.gz ,

click it once to select it, then click Open (or the like).

8. Click Start upload to upload all of your files at once to CS50’s servers.

9. On the screen that appears, you should see a window with No File Selected. If you

move your mouse toward the window’s lefthand side, you should see a list of the files

you uploaded. Click each to confirm the contents of each. (No need to click any other

buttons or icons.) If confident that you submitted the files you intended, consider your

source code submitted! If you’d like to re-submit different (or modified) files, simply

return to CS50 Submit21 and repeat these steps. You may re-submit as many times as

you’d like; we’ll grade your most recent submission, so long as it’s before the deadline.

Step 2 of 2

Head to https://forms.cs50.net/2015/fall/psets/8 where a short form awaits. (It’s a bit longer

than usual, so it’s okay if you start it before but submit it shortly after the problem set’s

deadline.) Once you have submitted that form (as well as your source code), you are done!

This was Problem Set 8, your last!

20 https://cs50.net/submit
21 https://cs50.net/submit

https://cs50.net/submit
https://cs50.net/submit
https://forms.cs50.net/2015/fall/psets/8
https://cs50.net/submit
https://cs50.net/submit

	Problem Set 8: Mashup
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Google Maps
	Google News
	jQuery
	typeahead.js
	Underscore

	Getting Started
	Walkthrough
	import
	index.php
	styles.css
	scripts.js
	addMarker
	configure
	hideInfo
	removeMarkers
	search
	showInfo
	update

	update.php
	search.php
	articles.php
	config.php
	helpers.php
	config.json

	What To Do
	config.json
	import
	search.php
	scripts.js
	configure
	addMarker
	removeMarkers
	personal touch

	How to Submit
	Step 1 of 2
	Step 2 of 2

