
CS50 Supersection
(for those less comfortable)

Friday, September 8, 2017
3 – 4pm, Science Center C

Maria Zlatkova, Doug Lloyd

Today’s Topics

● Setting up CS50 IDE
● Variables and Data Types
● Conditions
● Boolean Expressions
● Loops
● Using the Command Line

● Compiling
● CS50 Library
● Overflow
● Floating-Point Imprecision
● Problem Set 1

Setting up CS50 IDE

CS50 IDE

1. Visit cs50.io and log in
2. In the Terminal at the bottom type update50. Do this every time you see this

message, as important updates could be pushed. This shouldn’t ever affect
your own files, just system files!

Variables and Data Types

Variables and Data Types

● types of variables in C (for now!):

Type Use Case

int Integer variables, counters

char Letters and other single characters

float floating-point values

double floating-point values requiring more precision

long long integers that can get very large (> 4B)

string words, phrases, paragraphs

bool true or false

Using a Variable

● Before you can use a variable, you must first declare it. Declaring a variable is
like creating a container out of thin air. To declare a variable, specify its type,
then its name:
○ int year;

○ float pi;

● After you declare a variable, you may assign a value to that variable. Assigning
a variable is like putting something into that container. We assign with =. You
can only put a value of a compatible type into the variable.
○ year = 2017;

○ pi = 3.14159;

● It is possible to declare and assign a value to a variable simultaneously:
○ string course = "CS50";

Remember!

● You should only declare a variable once! (Doing otherwise can lead to trouble
down the line…)

● You may assign a variable as many times as you like, after having declared it.

● If you assign a variable without having declared it first, you may see an error
message like this when you try to compile your program.
○ error: use of undeclared identifier

● Incrementing the value of a variable

variable = variable + 1;
variable += 1;
variable++;

Conditions
Boolean Expressions

Scratch to C

● The puzzle blocks that you’re familiar with from Scratch mostly translate to C
as well.

● Just a matter of familiarizing yourself with the new syntax!

Boolean Expressions

● A boolean expression is a statement that evaluates to either true or false.
● In C, all values are considered true except for 0 and false (and a few others

that are certainly not important at this stage).
● They can be simple

○ 5

○ var < 7

○ year == 2016

○ change >= 1.00

● Or they can be compound
○ year >= 2007 && year <= 2016

○ file_open == false || (file_exists == false && directory_created == true)

Boolean Expressions

● Boolean expressions are most commonly used in the context of a conditional
statement.

● C has a few different types of conditional statements.
○ if

○ if-else

○ if-else if

○ if-else if-else

○ switch

○ Ternary operator (?:)

● If the Boolean expression associated with a conditional statement is true, the
code between the conditional statement's curly braces will execute.

Conditions - if

if (boolean-expression)
{

 // code

}

● If boolean-expression evaluates to true,
then the code between the curly braces
will execute.

● If boolean-expression evaluates to false,
then the code between the curly braces
will not execute.

Conditions - if-else

if (boolean-expression)
{

 // code snippet 1

}
else
{

 // code snippet 2
}

● If boolean-expression evaluates to true,
then any lines of code where code snippet
1 is will execute.

● If boolean-expression evaluates to false,
then any lines of code where code snippet
2 is will execute.

● Note that these are mutually exclusive, and
exactly 1 of these 2 things will happen.

Conditions - if-else if

if (boolean-expression-1)
{

 // code snippet 1

}
else if (boolean-expression-2)
{

 // code snippet 2
}

● If boolean-expression-1 evaluates to
true, then any lines of code where code
snippet 1 is will execute.

● Otherwise, if boolean-expression-2
evaluates to true, then any lines of code
where code snippet 2 is will execute.

● Note that these are mutually exclusive, and
if both Boolean expressions evaluate to
false, it’s possible that nothing will happen.

Switch Statement

● Instead of using Boolean expressions, the different possible values of a
variable are enumerated using case statements, below each of which go any
number of lines of code. At the end of each case, you must include a break;
so that the system knows where to stop executing lines of code.

● After the final case you specify, provide a default case in case none of your
prior case statements catch.

Conditions - switch
char x = get_char();

switch (x)
{
 case 'a':
 case 'b':
 // code snippet 1
 break;

 case 'c':
 case 'd':
 // code snippet 2
 break;

 // ...

 default:
 // code snippet n
 break;
}

● If the value of x is ‘a’ or ‘b’ at the time of
the switch, then any lines of code where
code snippet 1 is will execute.

● Otherwise, if the value of x is ‘c’ or ‘d’ at
the time of the switch, then any lines of
code where code snippet 2 is will execute.

● …
● Otherwise, if x has not matched any

preceding case statements, then by
default, any lines of code where code
snippet n is will execute.

Ternary Operator

● The ternary operator, also known as ?: (question-mark-colon) is used as a
clever shorthand for if-else, when the code inside each of the branches of if
and else are extremely short.

● It's not necessary to use it, but you may occasionally see it in code, including in
our distribution code.

Conditions - Ternary Operator

Using if-else

int x;

if (boolean-expression)
{
 x = 1;
}
else
{
 x = 0;
}

Using ?:

int x;

x = (boolean-expression) ? 1 : 0;

Loops

Loops

● C offers three primary flavors of loops.
○ while

○ for

○ do-while

● Each type of loop has its own use case and syntax, and normally leverages a
Boolean expression to determine when the looping should stop.

● Each of the three types of loops are often (but not always!) interchangeable.

while loops

● A while loop’s primary use case is to run code repeatedly, until some
condition is false, without necessarily knowing ahead of time how many
iterations that loop will require for the condition to be true.

● It is possible for the body of a while loop not to execute, if its condition is
false at the outset.

Loops - while

int n = 0;

while (n < 10)
{
 n = n + 1;
 printf("%i\n", n);
}

● The steps of a while loop are:
a. Check the Boolean expression -- in this

case n < 10.
b. If the Boolean expression is false, stop, and

proceed to the next line of code after the
closing curly brace.

c. If the Boolean expression is true, execute
each line of code between the curly braces
one line at a time.

d. Return to step a.

for loops

● A for loop’s primary use case is to run code a specific number of times.

Loops - for

for (int n = 1; n <= 10; n++)
{
 printf("%i\n", n);
}

● The steps of a for loop are:
a. Execute the initializer which normally, as

here, sets the starting value of a counter
variable.

b. Check the Boolean expression -- in this
case, n <= 10.

c. If the Boolean expression is false, stop, and
proceed to the next line of code after the
closing curly brace.

d. If the Boolean expression is true, execute
each line of code between the curly braces
one line at a time.

e. Execute the updater which normally, as
here, modifies the value of a counter
variable (not always by +1).

f. Return to step b.

do-while loops

● A do-while loop’s primary use case is to run code repeatedly, until some
condition is false, without necessarily knowing ahead of time how many
iterations that loop will require for the condition to be true.

● Unlike a while loop, which may never run if its condition is false at the outset,
a do-while loop is guaranteed to run at least one time, because the Boolean
expression is only checked at the end of the loop.

Loops - do-while

int n = 0;

do
{
 n++;
 printf("%i\n", n);
}
while (n < 10);

● The steps of a do-while loop are:
a. Execute each line of code between the

curly braces, one line at a time.
b. Check the Boolean expression -- in this

case n < 10.
c. If the Boolean expression is false, stop, and

proceed to the next line of code after the
condition.

d. If the Boolean expression is true, return to
step a.

Using the Command Line

Command Line

● Though CS50 IDE provides you with a file browser/tree on the left side of the
screen, you may discover that you prefer to work in the terminal at the bottom
of the window.

● As you become familiar with the commands, you may find that it is faster or
easier to do the same things you would otherwise do with the mouse.

Command Line - Listing a Folder’s Contents

● You can get a list of all the files and folders inside your current folder (aka
directory) in your CS50 IDE with the ls command, which is short for “list”.

Command Line - Creating a Folder

● You can create a directory in your CS50 IDE with the mkdir command.

mkdir <directory name>

mkdir pset1

Command Line - Navigate to Another Folder

● You can navigate to another directory in your CS50 IDE with the cd
command.

cd <directory name>

cd pset1

cd .. (takes you “up one level” to the parent directory)
cd (takes you back to your workspace directory)

● Be sure to use ls to see which directories you may navigate to! Without
specifying a more complex relative path, you can only generally move to those
directories that you can see from your current position in the file tree!

Command Line - Delete Files and Directories

● You can delete a file with the rm command (remove). This will remove those
files from the system -- be careful, this is irreversible!

rm <target>

rm mario.c

● You can also delete an empty directory with the rmdir command. This will
remove the directory from the system only if it is empty.

rmdir <directory>

Compiling

Compiling

● In this class, we’ll be writing quite a bit of code, initially using a language called
C, but ultimately in Python, JavaScript, and other languages.

● A computer, however, doesn’t understand programming languages in the
same way that humans do. Computers require a program’s source code to be
transformed into machine code or object code, which is ultimately just 0s and
1s, that it knows how to process.

Compiling

● When we write a file in C, we need to explicitly compile our code down to 0s
and 1s. We do this using a utility called make, which relies on a compiler called
clang.
○ If you have a file called “hello.c” and you want to compile it into a program called “hello”, all you

need to do is “make hello” from within the same directory where hello.c lives.
○ Later in the semester, we’ll learn about Makefiles, which allow us to build more complex,

multi-file programs.

● As we’ll see, some programming languages (including Python) hide this
“translating” step from you, but still do it behind the scenes.

Compiling

● Assuming your code is perfect, you’ll be rewarded with an executable that
does exactly what you want.

● More likely, though, is that you will encounter some compiler errors. It’s okay, it
happens to everyone--even experienced programmers!

● Compiler errors are notorious for being arcane and indecipherable, so we’ve
written a tool called help50 to make error messages a bit more user-friendly.
To use it when you have compiler errors, simply prepend “help50” to your use
of the make command.

help50 make hello

CS50 Library

CS50 Library

● A tool that makes it easier to write and debug programs, get user input, and
more!

get_char

get_double

get_float

get_int

get_long_long

get_string

Useful Functions

● Functions that prompt the user for input and can return chars, doubles,
floats, ints, long longs, and strings that can be stored in variables

int course = get_int("What is the course number for this class? ");

printf("This is CS%i.\n", course);

Output: This is CS50.

eprintf

#include <cs50.h>

#include <stdio.h>

int main(void)

{

 string name = get_string();

 eprintf("hello, %s\n", name);

}

● Output is different this time:

○ program:program.c:7: hello, doug

Data Representation:
Integer Overflow

Integer Overflow

● Occurs when the result of an arithmetic operation is a value that is too large to
fit in the space for a given variable

● Integers have finite ranges in computers and when the result of an arithmetic
operation cannot be represented, it overflows.
○ This can lead to inconsistencies in programs

Integer Overflow

 1 1 1 1 1 1 1 1

+ 1

 0 0 0 0 0 0 0 0

Data Representation:
Floating-Point Imprecision

Imprecision

● Because a computer must represent everything in binary, some values are
extremely difficult for a computer to represent.

● Much like we are not able to finitely represent ⅓ as a decimal, a computer is
also not capable of displaying some numbers easily.

● One major limitation for a computer, though, is that as humans we have an
infinite number of place values that allow us to get ever closer to ⅓. The
amount of space a computer has to represent a value is finite!

1/10

● If 1/10 is stored in a float, we only have 32 bits to work with, so we have to stop
at some point.
○ A double gets us to 64. Better, but still finite.

● That means that at some point, the computer will reach its limit. It will have to
decide that, for all intents and purposes, some number is “close enough” to
1/10. And usually, for what it’s worth, it is good enough.

● This happens for just about every floating point number. And the effects can
cascade.

● Take-away: You cannot represent infinitely many floating-point values with a
finite number of bits, so approximation happens, and approximation is
imprecise.

Problem Set 1

Problem Set 1

● hello.c
● mario.c
● cash.c / credit.c

How can we print a square of #’s using loops?

#####
#####
#####
#####
#####

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

#####
#####
#####
#####
#####

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

#

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

##

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

###

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

####

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

#####

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

#####

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

#####
#

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

#####
##

How can we print a square of #’s using loops?

for (int i = 0; i < 5; i++)
{

for (int j = 0; j < 5; j++)
{

printf("#");
}

printf("\n");
}

#####
#####
#####
#####
#####

Tools

Reminders!

● reference50

https://reference.cs50.net/

● help50

help50 <command> (e.g. help50 make hello)

● check50 / submit50

check50 <identifier> / submit50 <identifier>

● style50

style50 hello.c

Questions?

lloyd@cs50.harvard.edu
maria@cs50.harvard.edu

heads@cs50.harvard.edu

