
Create Your Own
Virtual Reality

London Lowmanstone

What will you learn?

● How to create a virtual reality app in Unity
● How to upload this app to an iPhone

Setup - bit.ly/vrseminar

● Install Unity (Personal) https://store.unity.com/
● Install MonoDevelop

(If not installed already - Microsoft Visual Studio will suffice as well)
http://www.monodevelop.com/download/

● Download Version 0.6 of the Google Cardboard SDK (Source code zip)
https://github.com/googlevr/gvr-unity-sdk/releases?after=v0.8.0

● If you have an iPhone - Download XCode and get a developer account
● Order any Google Cardboard v2 on Amazon (should be less than $10)

(This is the only step that should cost money)

http://bit.ly/vrseminar
https://store.unity.com/
http://www.monodevelop.com/download/
https://github.com/googlevr/gvr-unity-sdk/releases?after=v0.8.0

What is Virtual Reality?

● Immersive experience
● Many applications

○ Entertainment
○ Job training
○ Remote control

● Starting to take off
○ New devices
○ New audiences

Getting Started - Unity

● Engine for creating worlds
● Easy to build VR apps
● Free

Getting Started - VR

Let’s set up our world for virtual reality!

● Create a new project
● Import the SDK

○ Import Package > Custom Package > CardboardSDKForUnity

● Choose layout
● Add in CardboardMain Prefab
● Delete the Main Camera

Building Our World

Let’s create our virtual reality world!

● Terrain
● Player

Terrain

Let’s make some mountains! (We’ll add color later.)

● GameObject > 3D Object > Terrain
● Make it bigger

○ Edit Width and Length under Terrain Settings (the gear icon)
○ Don’t make it too big

● Draw mountains
○ Use “Raise Terrain” button (mountain with arrow up icon)

Player

Let’s get the player to fly around!

● GameObject > 3D Object > Sphere
○ We’ll attach the camera to this later

● Make it fly
○ Add Component > Rigidbody

■ Makes the ball into a physical object
■ Turn off gravity - we want to fly!

○ Add Component > New Script > Fly

Programming - Fly.cs

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Fly : MonoBehaviour {
// Use this for initialization
void Start () {

}

// Update is called once per frame
void Update () {

}
}

Programming - Fly.cs

public class Fly : MonoBehaviour {
// Speed that we want this object to travel at
public float speed;
// The object that points in the direction we want to move
public GameObject pointer;

// Use this for initialization
void Start () { }
...

}

Programming - Fly.cs

// Update is called once per frame
void Update () { }

// Make the object fly
void FixedUpdate () {

Rigidbody rb = GetComponent<Rigidbody> ();
rb.velocity = speed * pointer.transform.forward;

}

Using the Script

● Scripts can be dragged onto any object
● Fill in values for the public variables

○ Speed
■ 10 (just to see what’s going on)

○ Pointer
■ “Head” under CardboardMain object

CardboardMain versus Head

● CardboardMain is the body that moves
○ We attach motion scripts to CardboardMain

● Head is the part that tilts and rotates when the user looks
around
○ We use head as the pointer for other objects

● They both work together

Attach Camera to Sphere

● Create a new “Follow” script for CardboardMain (our camera)

public class Follow : MonoBehaviour {
// The object to follow
GameObject target;

. . .

// Use LateUpdate for smoother movements
void LateUpdate() {

gameObject.transform.position = target.transform.position;
}

}

First Test

Let’s try it!

● Bump up the speed on the Player object (the ball) to 50

● Hit play!

● Hold down the option key and move your mouse to fly

● Hold down control to tilt (this won’t change the direction you’re
travelling)

Organize Your Workspace

● Maintain a good folder structure in your project
○ I like to sort by the types of items
○ It will help you to find things faster when you need them
○ Makes understanding another person’s project much easier

Improvements

● Looks
○ Textures

● Landscape
○ Adding new objects

● Programming
○ Fix collisions
○ Move more smoothly

Textures

● Allow objects to look different
○ Can use any PNG image

● Static and flat
○ Can look 3D with a special “normal” PNG

● Allows you to paint the mountains
● Can download from online

Unity Store

● Find assets for free
● Choose what you need from each package

○ Limits import time and installation size

● Find some textures you like

Paint the Mountains

● Terrain > Paint Texture (the paintbrush icon) > Edit Textures
○ Drag the texture PNG into the RGB box and the Normal into Normal box

● Add more textures
● Make the mountains look however you want

Landscape - Adding Objects

● Unity can display FBX objects (.fbx, “Filmbox”)
● You can find these online

○ Drag them into your project’s “assets” folder in your computer’s filesystem to use them

● I’m going to add a castle
○ https://free3d.com/3d-model/fantasy-castle-40715.html

● “Generate Colliders” on FBX object

https://free3d.com/3d-model/fantasy-castle-40715.html

Programming - Movement

● Quick Collision Fix
○ Increase the radius of the ball

■ 50 works well

● Long-term Solution
○ Unity doesn’t like directly setting velocity
○ Use force instead
○ Better physics

Programming - Jedi (Using the Force)

public float maxSpeed; // should be set around 50
public float acceleration; // should be set around 10000
public GameObject pointer; // should be CardboardMain > Head object

void FixedUpdate () {
Rigidbody rb = GetComponent<Rigidbody> ();
rb.AddForce (acceleration * pointer.transform.forward * Time.deltaTime);
rb.velocity = Vector3.ClampMagnitude (rb.velocity, maxSpeed);

}

Colliders

● Define where objects touch
● Define what happens when objects touch
● Can be triggers

○ No physical action
○ Act as sensors

Physic Materials

Let’s make our mountains bouncy!

● How objects act when they touch
○ Dynamic Friction
○ Static Friction
○ Bounciness

● Right click in Project tab > Create > Physic Material
● Drag onto the Collider component of the mountain terrain

Congrats!

You just built your first virtual reality world!

Now we just need to upload it to your phone...

Xcode

● Used to make apps for iOS
● Unity exports to XCode

○ This process is called “Building”

Building the Project

● File > Build Settings
● Switch Platform to iOS
● Player Settings (beneath “platform”)

○ Company and Product Name
■ Doesn’t really matter

○ Bundle Identifier
■ Fill in with company and product name from above

○ Orientation - Landscape Left
○ Can add an icon for the app

● DO NOT CHECK “Virtual Reality Supported”
○ This is only for newer versions of the SDK

● Click “Build” - name the folder and click “Save”

Uploading to Your Phone

● Open the entire folder in XCode
○ Not just the XCode project inside
○ Newer versions of Google Cardboard SDK have issues if you don’t

● Unity-iPhone > General > Signing > Choose your team
● Add “Security.framework” to Linked Frameworks and Libraries

○ Beneath “Signing”

● Build-Settings > Enable Bitcode > No
○ This will not allow you to publish your app to the app store
○ I have yet to find a workaround (If you find one, let me know)

● Press the “Play” button in the top left to build and run the app

Extra Things

● Google Cardboard has a button
○ Boolean “Cardboard.SDK.Triggered”

● CardboardMain has options to remove display elements
○ Back button, settings button, alignment marker

● Displaying text in VR
○ Change “Screen Size” under CardboardMain > Emulation Settings

● Sounds
● Multiple scenes

○ Wind and Trees

Enjoy!

● Build some amazing worlds
● Share them with friends
● Encourage them to create their own!

