CS50 Seminar - Publishing Your Flask
App tothe Web

Carter Page

November 8, 2017

Plan of Attack

In this seminar, we divide publishing your Flask App to the Web into five
parts.

1. From CS50 IDE to GitHub

2. From GitHub to Your Mac

3. Database "Tire Change"

4. From Your Mac to Heroku

5. From Heroku to the Web

You can also follow along at https://github.com/carter-
page/whowashere.

Let's get started!

https://github.com/carter-page/whowashere

Part | - From CS50 IDE to GitHub

CS50 IDE

To begin, log into your CS50 IDE and cd into your project directory.

We are going to start off by getting our Flask app out of the CS50 IDE.

To do so, we are going to upload the files to the website GitHub using
git .

cd ~/project

git init

git add .

git commit —-m "first commit"

MEMORY
CS50IDE File Edit Find View Go vi23 o o Share ‘

v ~/workspace/ E o 24 B8
project/

pset1/

pset2/

pset3/

pset4/

pset5/

pset6/

pset6-legacy/ K
pset7/

pset8/

quiz/

test/

B v v v v v v v vVvyVvew

T
x

project/ X

~/workspace/ $ cdfproject

~/workspace/project/ $ git init

Initialized empty Git repository in /home/ubuntu/workspace/project/.git/
~/workspace/project/ (master) $ git i

Next, log into your GitHub accound and create a new repository.

O

© 2017 GitHub, Inc.

Pull requests Issues Marketplace Explore

Create a new repository

A repository contains all the files for your project, including the revision history.

Owner Repository name

carter-page~ /| myproject v

Great repository names are short and memorable. Need inspiration? How about improved-happiness.

Description (optional)

O |: | Public

Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

| Initialize this repository with a README
This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing
repository.

Add .gitignore: None v Add a license: None~ | ()

Create repsitory

Terms Privacy Security Status Help Contact GitHub API

Training Shop

+- @8-

Blog About

carter-page / myproject

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Insights

Quick setup — if you've done this kind of thing before
¥ setupinDesktop or HTTPS SSH https://github.com/carter-page/myproject.git

We recommend every repository include a README, LICENSE, and .gitignore.

...Or create a new repository on the command line

echo "# myproject" >> README.md
git init
git add README.md
git commit -m "first commit"
Git remote add origin https://github.com/carter-page/myproject.git)

git push —u origin master

...or push an existing repository from the command line

git remote add origin https://github.com/carter-page/myproject.git
git push —u origin master

...or import code from another repository
You can initialize this repository with code from a Subversion, Mercurial, or TFS project.

Import code

® Watch ~

Settings

Q ProTip! Use the URL for this page when adding GitHub as a remote.

0

Y Star

0

Part Il - From Github to Your Mac

00 e Terminal — -bash — 80x24
|

Homebrew

To prepare your Mac for your Flask app, we need to download many
different tools known as packages that our flask app needs to run. To
keep track of and manage all of these packages, we will use an
incredible program called Homebrew that is a lifesaver.

You can learn more about Homebrew at Homebrew's website.

https://brew.sh/

To install Homebrew, copy and paste the following into your Terminal
and press enter.

gy

-

®C e Desktop — ruby -e #!/System/Library/Frameworks/Ruby.framework/Versions/C...

Carters-MBP:Desktop carterpage$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githugﬂ
busercontent.com/Homebrew/install/master/install)" '
==> This script will install:

/usr/local/bin/brew i &
/usr/local/share/doc/homebrew jhé
/usr/local/share/man/manl/brew.1 ol

/usr/local/share/zsh/site-functions/_brew
/usr/local/etc/bash_completion.d/brew
/usr/local/Homebrew

==> The following new directories will be created:
4 /usr/local/sbin

Press RETURN to continue or any other key to abort

b
-9

Now that we have Homebrew, let's get git and download the files that
we previously pushed up to GitHub.

brew install git

cd ~/Desktop
git clone [URL]

) carter-page / whowaswhere Private

<> Code Issues 0

No description, website, or topics provided.

Add topics

D 5 commits

Pull requests 0

Projects 0 Wiki

¥ 1 branch

Insights

© 0 releases

® Watch~ 0 Y Star 0 YFork 0

Settings

Edit

22 1 contributor

Branch: master v New pull request

carter-page worked on README

B resources

B8 templates

[E .gitignore

E Procfile

E README.md
) application.py

E requirements.txt

README.md

worked on README
finished sampley
first commit

first commit
worked on README
finished sample

added gunicorn to requirements

Create new file = Upload files = Find file Clone or download ~

Latest commit 7d17b2f 16 seconds ago

16 seconds ago
an hour ago
2 hours ago
2 hours ago
16 seconds ago
an hour ago

2 hours ago

CS50 Seminar - Publishing Your Flask App to the Web

You can download the sample whowashere app by running:

git clone https://github.com/carter-page/whowashere.git

For our flask app, use brew to install python and python3 .

brew install python
brew install python3

Keeping track of all the dependencies of our specific flask app is quite a
lot of work. To make that easier we are going to use virtual
environments.

‘ brew install virtualenv

Atom

In the CS50 IDE, if you wanted to edit a file, you just clicked on it. It's not
so simple on your Mac. Developers use different text editors to interact
and make changes to programs. For this walkthrough, | recommend
using Atom. You can download Atom at https://atom.io

https://atom.io/

Once you have Atom installed, you can take a look at the files in your
flask app by executing atom . which means open the current
directory in Atom. Atom should immediately remind you of the CS50
IDE.

cd ~/Desktop/whowashere
atom .

Create our Virtual Environment

Next, create a virtual environment that uses python3 by default.

cd ~/Desktop/whowashere
virtualenv —-p python3 venv

To turn on our virtual environment that we have named venv , activate
it and thenuse pip toinstall the requirements listed in

requirements.txt .

source venv/bin/activate
pip install -r requirements.txt

Part lll - Database "Tire Change”

If you tried running flask run inthe Terminal, it wouldn't work. This
because the code | have provided is not connected to any database.
Right now, the program is trying to connect to a DATABASE_URL , but we
have not defined what that url is.

app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['DATAB,

We will get this DATABASE_URL from Heroku Postgres.

Heroku

Heroku is a platform that makes it easy for developers to publish their
web applications. To download Heroku's command-line tools, exectute
the following in your Terminal.

brew install heroku/brew/heroku

Next, create a Heroku account if you do not already have one at
https://sighup.heroku.com

Once you have an account, execute

heroku login
cd ~/whowashere
heroku create

https://signup.heroku.com/

Procfile

Heroku needs something calleda Procfile to tell Heroku what
command needs to be executed to get your web app to run. This has
been provided for you in the whowashere repository, but you will have
to do this on your own.

It is very easy to forget to add a Procfile! If Heroku gives you error
messages, always first double check you have given Heroku a
Procfile.

pip install gunicorn
touch Procfile
web: gunicorn application:app

Switch out our SQLite for PostgreSQL

The most difficult part of journey is switching out the SQLite we
used in the CS50 IDE for Heroku Postgres.

This step will take time and learning more about Flask-SQLAIchemy to
find the answers for your specific database implementation.

http://flask-sqlalchemy.pocoo.org/2.3/quickstart/

Begin by

pip install Flask-SQLAlchemy

We now need to remove the following lines from our code that invoke
SQLite since we are switching to Heroku Postgres.

Remove
from cs50 import SQL

AB.= SQL("sqglite:///finance.db")

#Replace with

import os
from flask_sqglalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_ TRACK_MODIFICATIONS'] = False

app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['DATAB
db = SQLAlchemy(app)

class User(db.Model):
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(80), unique=True, nullable:

def _init_(self, name):
self.name = name

Remove
db.execute("INSERT INTO user (name) VALUES (:name)", name:

Replace with

new_user = User(name)
db.session.add(new_user)
db.session.commit ()

Similarly, We can implement a SELECT statement by using query
following the class name.

users = User.query.order_by(User.id).all()

Once we have switched to Flask-SQLAIchemy, all we need to do now is
create our database.

Getting our Heroku Postgresqgl DATABASE_URL

We generate our Heroku Postgres DATABASE_URL using the following
commands.

heroku addons:create heroku—-postgresql:hobby-dev
heroku config

The config command will output the DATABASE_URL environment
variable. For local testing, copy this DATABASE_URL and then type
touch .env .Inside of Atom, edit .env sothatitis

export FLASK_APP=application.py
export FLASK_DEBUG=1

export DATABASE_URL=[DATABASE_URL]

To load these environment variables to your Mac, type

source .env

Postico

Download the free trial of Postico at https://eggerapps.at/postico/

Open Postico, and with DATABASE_URL copied to your clipboard, click
"New Favorite". The fields should be populated automatically. Click
connect to connect to your database.

Right now, our database does not contain our user table. Time to
create our table.

https://eggerapps.at/postico/

Part IV - From Your Mac to Heroku

Use git toload, stamp, and send the files from your Mac to Heroku.

pip freeze > requirements.txt

git add .

git commit -m "pushing to heroku"
git push heroku master

Actually Creating our Table

heroku run python
from application import db

db.create_all()
exit()

If you press refresh in the upper right hand corner of Postico, you should
now see the user table appear.

@ @ (%3 whowashere ' & d4b6tojtjos2pg ~ Connected. PostgreSQL 9.6.3 C\]

SQL Query

E i SELECT *
» [pg_catalog FROM tbl;

» Iil information_schema
SQL Query

user

» [pg_catalog

» [information_schema

@) + Table =+ View @ + Materialized View Q

Running Locally

To run your web app locally, load your environment variables and then
type flask run. DON'T FORGET source .env .

cd ~/Desktop/whowaswhere
source .env
flask run

Then on Safari or Chrome, goto localhost:5000 and you should see
your web app running.

Part V - From Heroku to the Web

It has been a long journey. To see our flask app on the web, run
heroku open

and you should see your web app running on the internet. You can share
the url with friends and family. Notice that if you add names to the web
app (either locally or on the internet), the database updates in Postico.

SQL Query id name
s o Who was here?
L]

» [pg_catalog 17 David

» £ information_schema 18 Natalie e Carter
e David

o Natalie

Thank you!

Be sure to check out https://github.com/carter-page/whowashere to
download the demo whowashere code and follow along the full
walkthrough. Good luck!

https://github.com/carter-page/whowashere

