
CS50 Seminar ‑ Publishing Your Flask
App to the Web

Carter Page

November 8, 2017

Plan of Attack

In this seminar, we divide publishing your Flask App to the Web into five
parts.

1. From CS50 IDE to GitHub

2. From GitHub to Your Mac

3. Database "Tire Change"

4. From Your Mac to Heroku

5. From Heroku to the Web

You can also follow along at https://github.com/carter‑
page/whowashere.

Let's get started!

https://github.com/carter-page/whowashere

Part I ‑ From CS50 IDE to GitHub

CS50 IDE

To begin, log into your CS50 IDE and cd into your project directory.
We are going to start off by getting our Flask app out of the CS50 IDE.
To do so, we are going to upload the files to the website GitHub using
 git .

cd ~/project
git init
git add .
git commit -m "first commit"

Next, log into your GitHub accound and create a new repository.

Part II ‑ From Github to Your Mac

Homebrew

To prepare your Mac for your Flask app, we need to download many
different tools known as packages that our flask app needs to run. To
keep track of and manage all of these packages, we will use an
incredible program called Homebrew that is a lifesaver.

You can learn more about Homebrew at Homebrew's website.

https://brew.sh/

To install Homebrew, copy and paste the following into your Terminal
and press enter.

Now that we have Homebrew, let's get git and download the files that
we previously pushed up to GitHub.

brew install git

cd ~/Desktop
git clone [URL]

You can download the sample whowashere app by running:

git clone https://github.com/carter-page/whowashere.git

For our flask app, use brew to install python and python3 .

brew install python
brew install python3

Keeping track of all the dependencies of our specific flask app is quite a
lot of work. To make that easier we are going to use virtual
environments.

brew install virtualenv

Atom

In the CS50 IDE, if you wanted to edit a file, you just clicked on it. It's not
so simple on your Mac. Developers use different text editors to interact
and make changes to programs. For this walkthrough, I recommend
using Atom. You can download Atom at https://atom.io

https://atom.io/

Once you have Atom installed, you can take a look at the files in your
flask app by executing atom . which means open the current
directory in Atom. Atom should immediately remind you of the CS50
IDE.

cd ~/Desktop/whowashere
atom .

Create our Virtual Environment

Next, create a virtual environment that uses python3 by default.

cd ~/Desktop/whowashere
virtualenv -p python3 venv

To turn on our virtual environment that we have named venv , activate
it and then use pip to install the requirements listed in
 requirements.txt .

source venv/bin/activate
pip install -r requirements.txt

Part III ‑ Database "Tire Change"

If you tried running flask run in the Terminal, it wouldn't work. This
because the code I have provided is not connected to any database.
Right now, the program is trying to connect to a DATABASE_URL , but we
have not defined what that url is.

We will get this DATABASE_URL from Heroku Postgres.

app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['DATABASE_URL'

Heroku

Heroku is a platform that makes it easy for developers to publish their
web applications. To download Heroku's command‑line tools, exectute
the following in your Terminal.

brew install heroku/brew/heroku

Next, create a Heroku account if you do not already have one at
https://signup.heroku.com

Once you have an account, execute

heroku login
cd ~/whowashere
heroku create

https://signup.heroku.com/

Procfile

Heroku needs something called a Procfile to tell Heroku what
command needs to be executed to get your web app to run. This has
been provided for you in the whowashere repository, but you will have
to do this on your own.

It is very easy to forget to add a Procfile! If Heroku gives you error
messages, always first double check you have given Heroku a
Procfile.

pip install gunicorn
touch Procfile
web: gunicorn application:app

Switch out our SQLite for PostgreSQL

The most difficult part of journey is switching out the SQLite we
used in the CS50 IDE for Heroku Postgres.

This step will take time and learning more about Flask‑SQLAlchemy to
find the answers for your specific database implementation.

http://flask-sqlalchemy.pocoo.org/2.3/quickstart/

Begin by

pip install Flask-SQLAlchemy

We now need to remove the following lines from our code that invoke
SQLite since we are switching to Heroku Postgres.

Remove
from cs50 import SQL
...
db = SQL("sqlite:///finance.db")

#Replace with

import os
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__)
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['DATABASE_URL'
db = SQLAlchemy(app)

class User(db.Model):
 id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String(80), unique=True, nullable=

 def __init__(self, name):
 self.name = name

Remove
db.execute("INSERT INTO user (name) VALUES (:name)", name=name)

Replace with
new_user = User(name)
db.session.add(new_user)
db.session.commit()

Similarly, We can implement a SELECT statement by using query
following the class name.

users = User.query.order_by(User.id).all()

Once we have switched to Flask‑SQLAlchemy, all we need to do now is
create our database.

Getting our Heroku Postgresql DATABASE_URL

We generate our Heroku Postgres DATABASE_URL using the following
commands.

heroku addons:create heroku-postgresql:hobby-dev
heroku config

The config command will output the DATABASE_URL environment
variable. For local testing, copy this DATABASE_URL and then type
 touch .env . Inside of Atom, edit .env so that it is

export FLASK_APP=application.py
export FLASK_DEBUG=1

export DATABASE_URL=[DATABASE_URL]

To load these environment variables to your Mac, type

 source .env

Postico

Download the free trial of Postico at https://eggerapps.at/postico/

Open Postico, and with DATABASE_URL copied to your clipboard, click
"New Favorite". The fields should be populated automatically. Click
connect to connect to your database.

Right now, our database does not contain our user table. Time to
create our table.

https://eggerapps.at/postico/

Part IV ‑ From Your Mac to Heroku

Use git to load, stamp, and send the files from your Mac to Heroku.

pip freeze > requirements.txt
git add .
git commit -m "pushing to heroku"
git push heroku master

Actually Creating our Table

heroku run python
from application import db
db.create_all()
exit()

If you press refresh in the upper right hand corner of Postico, you should
now see the user table appear.

Running Locally

To run your web app locally, load your environment variables and then
type flask run. DON'T FORGET source .env .

cd ~/Desktop/whowaswhere
source .env
flask run

Then on Safari or Chrome, go to localhost:5000 and you should see
your web app running.

Part V ‑ From Heroku to the Web

It has been a long journey. To see our flask app on the web, run

heroku open

and you should see your web app running on the internet. You can share
the url with friends and family. Notice that if you add names to the web
app (either locally or on the internet), the database updates in Postico.

Thank you!
Be sure to check out https://github.com/carter‑page/whowashere to
download the demo whowashere code and follow along the full
walkthrough. Good luck!

https://github.com/carter-page/whowashere

