
Arrays



Arrays

● Arrays are a fundamental data structure, and they 
are extremely useful!

● We use arrays to hold values of the same type at 
contiguous memory locations.

● One way to analogize the notion of array is to think 
of your local post office, which usually has a large 
bank of post office boxes.



Arrays

Arrays Post Office Boxes

An array is a block of contiguous 

space in memory…

A mail bank is a large space on the 

wall of the post office…



Arrays

Arrays Post Office Boxes

An array is a block of contiguous 

space in memory…

A mail bank is a large space on the 

wall of the post office…

…which has been partitioned into 

small, identically-sized blocks of 

space called elements…

…which has been partitioned into 

small, identically-sized blocks of 

space called post office boxes…



Arrays

Arrays Post Office Boxes

An array is a block of contiguous 

space in memory…

A mail bank is a large space on the 

wall of the post office…

…which has been partitioned into 

small, identically-sized blocks of 

space called elements…

…which has been partitioned into 

small, identically-sized blocks of 

space called post office boxes…

…each of which can store a certain 

amount of data…

…each of which can hold a certain

amount of mail…



Arrays

Arrays Post Office Boxes

An array is a block of contiguous 

space in memory…

A mail bank is a large space on the 

wall of the post office…

…which has been partitioned into 

small, identically-sized blocks of 

space called elements…

…which has been partitioned into 

small, identically-sized blocks of 

space called post office boxes…

…each of which can store a certain 

amount of data…

…each of which can hold a certain

amount of mail…

…all of the same data type such as 

int or char…

…all of a similar type such as letters

or small packages…



Arrays

Arrays Post Office Boxes

An array is a block of contiguous 

space in memory…

A mail bank is a large space on the 

wall of the post office…

…which has been partitioned into 

small, identically-sized blocks of 

space called elements…

…which has been partitioned into 

small, identically-sized blocks of 

space called post office boxes…

…each of which can store a certain 

amount of data…

…each of which can hold a certain

amount of mail…

…all of the same data type such as 

int or char…

…all of a similar type such as letters

or small packages…

…and which can be accessed directly 

by an index.

…and which can be accessed directly 

by a mailbox number.



Arrays

● In C, the elements of an array are indexed starting 
from 0.

● This is one of the major reasons we count from zero!

● If an array consists of n elements, the first element 
is located at index 0. The last element is located at 
index (n-1).

● C is very lenient. It will not prevent you from going 
“out of bounds” of your array; be careful!



Arrays

● Array declarations

● The type is what kind of variable each element of the 
array will be.

● The name is what you want to call your array.

● The size is how many elements you would like your 
array to contain.

type name[size];



Arrays

● Array declarations

● The type is what kind of variable each element of the 
array will be.

● The name is what you want to call your array.

● The size is how many elements you would like your 
array to contain.

int student_grades[40];



Arrays

● Array declarations

● The type is what kind of variable each element of the 
array will be.

● The name is what you want to call your array.

● The size is how many elements you would like your 
array to contain.

double menu_prices[8];



Arrays

● If you think of a single element of an array of type 
data-type the same as you would any other 
variable of type data-type (which, effectively, it 
is) then all the familiar operations make sense. 

bool truthtable[10];

truthtable[2] = false;

if(truthtable[7] == true)

{

printf(“TRUE!\n”);

}

truthtable[10] = true;



Arrays

● If you think of a single element of an array of type 
data-type the same as you would any other 
variable of type data-type (which, effectively, it 
is) then all the familiar operations make sense. 

bool truthtable[10];

truthtable[2] = false;

if(truthtable[7] == true)

{

printf(“TRUE!\n”);

}

truthtable[10] = true;



Arrays

● When declaring and initializing an array 
simultaneously, there is a special syntax that may 
be used to fill up the array with its starting values.

// instantiation syntax

bool truthtable[3] = { false, true, true };

// individual element syntax

bool truthtable[3];

truthtable[0] = false;

truthtable[1] = true;

truthtable[2] = true;



Arrays

● When declaring and initializing an array 
simultaneously, there is a special syntax that may 
be used to fill up the array with its starting values.

// instantiation syntax

bool truthtable[] = { false, true, true };

// individual element syntax

bool truthtable[3];

truthtable[0] = false;

truthtable[1] = true;

truthtable[2] = true;



Arrays

● Arrays can consist of more than a single dimension. 
You can have as many size specifiers as you wish.

● You can choose to think of this as either a 10x10 
grid of cells. 

● In memory though, it’s really just a 100-element one-
dimensional array.

● Multi-dimensional arrays are great abstractions to help 
visualize game boards or other complex 
representations.

bool battleship[10][10];



Arrays

● While we can treat individual elements of arrays as 
variables, we cannot treat entire arrays themselves 
as variables.

● We cannot, for instance, assign one array to 
another using the assignment operator. That is not 
legal C.

● Instead, we must use a loop to copy over the 
elements one at a time.



Arrays

int foo[5] = { 1, 2, 3, 4, 5 };

int bar[5];

bar = foo;



Arrays

int foo[5] = { 1, 2, 3, 4, 5 };

int bar[5];

bar = foo;



Arrays

int foo[5] = { 1, 2, 3, 4, 5 };

int bar[5];

for(int j = 0; j < 5; j++)

{

bar[j] = foo[j];

}



Arrays

● Recall that most variables in C are passed by value

in function calls.

● Arrays do not follow this rule. Rather, they are 
passed by reference. The callee receives the actual 
array, not a copy of it.

● What does that mean when the callee manipulates 
elements of the array?

● For now, we’ll gloss over why arrays have this 
special property, but we’ll return to it soon enough!



Arrays
void set_array(int array[4]);

void set_int(int x);

int main(void)

{

int a = 10;

int b[4] = { 0, 1, 2, 3 };

set_int(a);

set_array(b);

printf(“%d %d\n”, a, b[0]);

}

void set_array(int array[4])

{

array[0] = 22;

}

void set_int(int x)

{

x = 22;

}



Arrays

10, 22


