
Conditionals

Conditionals

● Conditional expressions allow your programs to
make decisions and take different forks in the road,
depending on the values of variables or user input.

● C provides a few different ways to implement
conditional expressions (also known as branches) in
your programs, some of which likely look familiar
from Scratch.

Conditionals

if (boolean-expression)
{

}

• If the boolean-expression evaluates to true, all lines

of code between the curly braces will execute in order from

top-to-bottom.

• If the boolean-expression evaluates to false, those

lines of code will not execute.

Conditionals

if (boolean-expression)
{

}
else
{

}

• If the boolean-expression evaluates to true, all lines

of code between the first set of curly braces will execute in

order from top-to-bottom.

• If the boolean-expression evaluates to false, all lines

of code between the second set of curly braces will execute

in order from top-to-bottom.

Conditionals

if (boolean-expr1)
{

// first branch
}
else if (boolean-expr2)
{

// second branch
}
else if (boolean-expr3)
{

// third branch
}
else
{

// fourth branch
}

• In C, it is possible to create an
if–else if-else chain.

• In Scratch, this required nesting
blocks.

• As you would expect, each
branch is mutually exclusive.

Conditionals

if (boolean-expr1)
{

// first branch
}
if (boolean-expr2)
{

// second branch
}
if (boolean-expr3)
{

// third branch
}
else
{

// fourth branch
}

• It is also possible to create a
chain of non-mutually exclusive
branches.

• In this example, only the third
and fourth branches are
mutually exclusive. The else
binds to the nearest if only.

Conditionals

int x = GetInt();

switch(x)
{

case 1:

printf(“One!\n”);
break;

case 2:

printf(“Two!\n”);
break;

case 3:

printf(“Three!\n”);
break;

default:

printf(“Sorry!\n”);
}

• C’s switch() statement is a
conditional statement that permits
enumeration of discrete cases,
instead of relying on Boolean
expressions.

• It’s important to break; between
each case, or you will “fall through”
each case (unless that is desired
behavior).

Conditionals

int x = GetInt();
switch(x)
{

case 5:
printf(“Five, ”);

case 4:
printf(“Four, ”);

case 3:
printf(“Three, ”);

case 2:
printf(“Two, ”);

case 1:
printf(“One, ”);

default:
printf(“Blast-

off!\n”);
}

• C’s switch() statement is a
conditional statement that permits
enumeration of discrete cases,
instead of relying on Boolean
expressions.

• It’s important to break; between
each case, or you will “fall through”
each case (unless that is desired
behavior).

Conditionals

int x;
if (expr)
{

x = 5;
}
else
{

x = 6;
}

int x = (expr) ? 5 : 6;

• These two snippets of code act identically.

• The ternary operator (?:) is mostly a cute trick, but is

useful for writing trivially short conditional branches. Be

familiar with it, but know that you won’t need to write it if

you don’t want to.

Conditionals

if (and if-else, and if-else if-…-else)

● Use Boolean expressions to make decisions.

switch

● Use discrete cases to make decisions.

?:

● Use to replace a very simple if-else to make your
code look fancy.

