
File Pointers



File Pointers

• The ability to read data from and write data to files is the 
primary means of storing persistent data, data that does not 
disappear when your program stops running.

• The abstraction of files that C provides is implemented in a 
data structure known as a FILE.
• Almost universally when working with files, we will be using pointers 

to them, FILE*.



File Pointers

• The file manipulation functions all live in stdio.h.
• All of them accept FILE* as one of their parameters, except for the 

function fopen(), which is used to get a file pointer in the first 
place.

• Some of the most common file input/output (I/O) functions 
that we’ll be working with are:

fopen() fclose() fgetc() fputc() fread() fwrite()



File Pointers

• fopen()
• Opens a file and returns a file pointer to it.

• Always check the return value to make sure you don’t get back NULL.

FILE* ptr = fopen(<filename>, <operation>);



File Pointers

• fopen()
• Opens a file and returns a file pointer to it.

• Always check the return value to make sure you don’t get back NULL.

FILE* ptr1 = fopen(“file1.txt”, “r”);



File Pointers

• fopen()
• Opens a file and returns a file pointer to it.

• Always check the return value to make sure you don’t get back NULL.

FILE* ptr2 = fopen(“file2.txt”, “w”);



File Pointers

• fopen()
• Opens a file and returns a file pointer to it.

• Always check the return value to make sure you don’t get back NULL.

FILE* ptr3 = fopen(“file3.txt”, “a”);



File Pointers

• fclose()
• Closes the file pointed to by the given file pointer.

fclose(<file pointer>);



File Pointers

• fclose()
• Closes the file pointed to by the given file pointer.

fclose(ptr1);



File Pointers

• fgetc()
• Reads and returns the next character from the file pointed to.

• Note: The operation of the file pointer passed in as a parameter must 
be “r” for read, or you will suffer an error.

char ch = fgetc(<file pointer>);



File Pointers

• fgetc()
• Reads and returns the next character from the file pointed to.

• Note: The operation of the file pointer passed in as a parameter must 
be “r” for read, or you will suffer an error.

char ch = fgetc(ptr1);



File Pointers

• The ability to get single characters from files, if wrapped in a 
loop, means we could read all the characters from a file and 
print them to the screen, one-by-one, essentially.

• We might put this in a file called cat.c, after the Linux 
command “cat” which essentially does just this.

char ch;
while((ch = fgetc(ptr)) != EOF)

printf(“%c”, ch);



File Pointers

• The ability to get single characters from files, if wrapped in a 
loop, means we could read all the characters from a file and 
print them to the screen, one-by-one, essentially.

• We might put this in a file called cat.c, after the Linux 
command “cat” which essentially does just this.

char ch;
while((ch = fgetc(ptr)) != EOF)

printf(“%c”, ch);



File Pointers

• The ability to get single characters from files, if wrapped in a 
loop, means we could read all the characters from a file and 
print them to the screen, one-by-one, essentially.

• We might put this in a file called cat.c, after the Linux 
command “cat” which essentially does just this.

char ch;
while((ch = fgetc(ptr)) != EOF)

printf(“%c”, ch);



File Pointers

• fputc()
• Writes or appends the specified character to the pointed-to file.

• Note: The operation of the file pointer passed in as a parameter must 
be “w” for write or “a” for append, or you will suffer an error.

fputc(<character>, <file pointer>);



File Pointers

• fputc()
• Writes or appends the specified character to the pointed-to file.

• Note: The operation of the file pointer passed in as a parameter must 
be “w” for write or “a” for append, or you will suffer an error.

fputc(‘A’, ptr2);



File Pointers

• fputc()
• Writes or appends the specified character to the pointed-to file.

• Note: The operation of the file pointer passed in as a parameter must 
be “w” for write or “a” for append, or you will suffer an error.

fputc(‘!’, ptr3);



File Pointers

• Now we can read characters from files and write characters to 
them. Let’s extend our previous example to copy one file to 
another, instead of printing to the screen.

char ch;
while((ch = fgetc(ptr)) != EOF)

printf(“%c”, ch);



File Pointers

• Now we can read characters from files and write characters to 
them. Let’s extend our previous example to copy one file to 
another, instead of printing to the screen.

• We might put this in a file called cp.c, after the Linux 
command “cp” which essentially does just this.

char ch;
while((ch = fgetc(ptr)) != EOF)

fputc(ch, ptr2);



File Pointers

• fread()
• Reads <qty> units of size <size> from the file pointed to and stores 

them in memory in a buffer (usually an array) pointed to by 
<buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “r” for read, or you will suffer an error.

fread(<buffer>, <size>, <qty>, <file pointer>);



File Pointers

• fread()
• Reads <qty> units of size <size> from the file pointed to and stores 

them in memory in a buffer (usually an array) pointed to by 
<buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “r” for read, or you will suffer an error.

int arr[10];
fread(arr, sizeof(int), 10, ptr);



File Pointers

• fread()
• Reads <qty> units of size <size> from the file pointed to and stores 

them in memory in a buffer (usually an array) pointed to by 
<buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “r” for read, or you will suffer an error.

double* arr2 = malloc(sizeof(double) * 80);
fread(arr2, sizeof(double), 80, ptr);



File Pointers

• fread()
• Reads <qty> units of size <size> from the file pointed to and stores 

them in memory in a buffer (usually an array) pointed to by 
<buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “r” for read, or you will suffer an error.

char c;
fread(&c, sizeof(char), 1, ptr);



File Pointers

• fread()
• Reads <qty> units of size <size> from the file pointed to and stores 

them in memory in a buffer (usually an array) pointed to by 
<buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “r” for read, or you will suffer an error.

char c;
fread(&c, sizeof(char), 1, ptr);



File Pointers

• fwrite()
• Writes <qty> units of size <size> to the file pointed to by reading 

them from a buffer (usually an array) pointed to by <buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “w” for write or “a” for append, or you will suffer an error.

fwrite(<buffer>, <size>, <qty>, <file pointer>);



File Pointers

• fwrite()
• Writes <qty> units of size <size> to the file pointed to by reading 

them from a buffer (usually an array) pointed to by <buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “w” for write or “a” for append, or you will suffer an error.

int arr[10];
fwrite(arr, sizeof(int), 10, ptr);



File Pointers

• fwrite()
• Writes <qty> units of size <size> to the file pointed to by reading 

them from a buffer (usually an array) pointed to by <buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “w” for write or “a” for append, or you will suffer an error.

double* arr2 = malloc(sizeof(double) * 80);
fwrite(arr2, sizeof(double), 80, ptr);



File Pointers

• fwrite()
• Writes <qty> units of size <size> to the file pointed to by reading 

them from a buffer (usually an array) pointed to by <buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “w” for write or “a” for append, or you will suffer an error.

char c;
fwrite(&c, sizeof(char), 1, ptr);



File Pointers

• fwrite()
• Writes <qty> units of size <size> to the file pointed to by reading 

them from a buffer (usually an array) pointed to by <buffer>.

• Note: The operation of the file pointer passed in as a parameter must 
be “w” for write or “a” for append, or you will suffer an error.

char c;
fwrite(&c, sizeof(char), 1, ptr);



File Pointers

• Lots of other useful functions abound in stdio.h for you to work 
with. Here are some of the ones you may find useful!



File Pointers

• Lots of other useful functions abound in stdio.h for you to work 
with. Here are some of the ones you may find useful!

Function Description

fgets() Reads a full string from a file.

fputs() Writes a full string to a file.

fprintf() Writes a formatted string to a file.

fseek() Allows you rewind or fast-forward within a file.

ftell() Tells you at what (byte) position you are at within a file.

feof() Tells you whether you’ve read to the end of a file.

ferror() Indicates whether an error has occurred in working with a file.


