Functions

Functions

. So far, all the programs we’ve been writing in the
course have been written inside of main().

. That hasn’t been a problem yet, but it could be if
our programs start to become unwieldy.

. Cand nearly all languages developed since allow us
to write functions, sometimes also known as
procedures, methods, or subroutines.

. Let’s see what functions are all about.

Functions

. What is a function?
. A black box with a set of O+ inputs and 1 output.

Functions

. What is a function?
. A black box with a set of O+ inputs and 1 output.

a b C

Z

Functions

. What is a function?
. A black box with a set of O+ inputs and 1 output.

3 6 7

16

Functions

. What is a function?
. A black box with a set of O+ inputs and 1 output.

Functions

. Why call it a black box?

. If we aren’t writing the functions ourselves, we don’t
need to know the underlying implementation.

mult(a, b):
output a * b

Functions

. Why call it a black box?

. If we aren’t writing the functions ourselves, we don’t
need to know the underlying implementation.

mult(a, b):
set counter to ©
repeat b times
add a to counter
output counter

Functions

. Why call it a black box?

. If we aren’t writing the functions ourselves, we don’t
need to know the underlying implementation.

. That’s part of the contract of using functions. The
behavior is typically predictable based on that name.
That’s why most functions have clear, obvious(ish)
names, and are well-documented.

Functions

. Why use functions?

. Organization

Functions help break up a complicated problem into more
manageable subparts.

. Simplification

Smaller components tend to be easier to design,
implement, and debug.

. Reusability

. Functions can be recycled; you only need to write them
once, but can use them as often as you need!

Functions

. Function Declarations

. The first step to creating a function is to declare it. This
gives the compiler a heads-up that a user-written
function appears in the code.

. Function declarations should always go atop your code,
before you begin writing main().

. There is a standard form that every function
declaration follows.

Functions
. Function Declarations

return-type name(argument-list);

. The return-type is what kind of variable the
function will output.

. The name is what you want to call your function.

. The argument-1lististhe comma-separated set of

inputs to your function, each of which has a type and a
name.

Functions

. A function to add two integers.

int add _two _ints(int a, int b);

. The sum of two integers is going to be an integer as
well.

. Given what this function does, make sure to give it an
appropriate name.

. There are two inputs to this function, and we need to
give a name to each of them for purposes of the
function. There’s nothing important about these inputs
as far as we know, so giving them simple names is okay.

Functions

. A function to multiply two floating point numbers.

Functions

. A function to multiply two floating point numbers.

float mult_two_reals(float x, float y);

. The product of two floating point numbers is also a
floating point number.

. Let’s be sure to give this a relevant name.

. Again, the names of these particular inputs don’t seem
to be important, so we can call them anything simple.

Functions

. A function to multiply two floating point numbers.

double mult two reals(double x, double y);

. The product of two floating point numbers is also a
floating point number.

. Let’s be sure to give this a relevant name.

. Again, the names of these particular inputs don’t seem
to be important, so we can call them anything simple.

Functions

. Function Definitions

. The second step to creating a function is to define it.

This allows for predictable behavior when the function
is called with inputs.

. Let’strytodefinemult two reals(), froma
moment ago.

Functions

. A function definition looks almost identical to a
function declaration, with a small change.

float mult_two_reals(float x, float y);

float mult two reals(float x, float y)

{
float product = x * y;

return product;

¥

. How would you fill in this black box?

Functions

. A function definition looks almost identical to a
function declaration, with a small change.

float mult_two_reals(float x, float y);

float mult two reals(float x, float y)
{

¥

return x * y;

. How would you fill in this black box?

Functions

. Now, take a moment and try to define
add_two_ints(), from a moment ago.

int add_two_ints(int a, int b);

int add two _ints(int a, int b)

{

Functions

. Now, take a moment and try to define
add_two_ints(), from a moment ago.

int add_two_ints(int a, int b);

int add two _ints(int a, int b)

{
int sum; // declare variable
sum = a + b; // calculate the sum
return sum; // give result back

Functions

. Now, take a moment and try to define
add_two_ints(), from a moment ago.

int add_two_ints(int a, int b);

int add two _ints(int a, int b)
{

int sum = a + b; // calc variable
return sum; // give result back

Functions

. Now, take a moment and try to define

add_two_ints(), from a moment ago.

int add_two _ints(int a,

int add_two _ints(int a,

{

int sum = 9;
if(a > 9)

for(int i = 9; i
else

for(int i = a; i
if(b > 0)

for(int i = 9; i
else

for(int i = b; i

return sum;

int b);
int b)
< a; sum++,
< @; sum--,
< b; sum++,
< @; sum--,

i++);
i++);
i++);

i++);

Functions

. Function Calls
. Now that you’ve created a function, time to use it!

. To call a function, simply pass it appropriate arguments
and assign its return value to something of the correct

type.

. To illustrate this, let’s have a look at adder-1.c

Functions

. Function Miscellany

. Recall from our discussion of data types that functions
can sometimes take no inputs. In that case, we declare
the function as having a void argument list.

. Recall also that functions sometimes do not have an
output. In that case, we declare the function as having
a void return type.

Functions

. Practice Problem

. Declare a write a function called valid triangle
that takes three real numbers representing the lengths
of the three sides of a triangle as its arguments, and
outputs either true or false, depending on whether
those three lengths are capable of making a triangle.

. Note the following rules about triangles:
. A triangle may only have sides with positive length.

. The sum of the lengths of any two sides of the triangle must
be greater than the length of the third side.

Functions

bool valid triangle(float x, float y, float z);

bool valid triangle(float x, float y, float z)

{

// check for all positive sides
if (x <=0 || y<=0 || z <= 0)
{

}

return false;

// check that sum of any two sides greater than third
if (x+y<=2) || (x+z<=y) || (y+2z<=x))
{

}

return false;

// if we passed both tests, we’re good!
return true;

