
Functions

Functions

● So far, all the programs we’ve been writing in the
course have been written inside of main().

● That hasn’t been a problem yet, but it could be if
our programs start to become unwieldy.

● C and nearly all languages developed since allow us
to write functions, sometimes also known as
procedures, methods, or subroutines.

● Let’s see what functions are all about.

Functions

● What is a function?

● A black box with a set of 0+ inputs and 1 output.

Functions

● What is a function?

● A black box with a set of 0+ inputs and 1 output.

func(a, b, c)

a b c

z

Functions

● What is a function?

● A black box with a set of 0+ inputs and 1 output.

add(a, b, c)

3 6 7

16

Functions

● What is a function?

● A black box with a set of 0+ inputs and 1 output.

mult(a, b)

4 5

20

Functions

● Why call it a black box?

● If we aren’t writing the functions ourselves, we don’t
need to know the underlying implementation.

mult(a, b):
output a * b

Functions

● Why call it a black box?

● If we aren’t writing the functions ourselves, we don’t
need to know the underlying implementation.

mult(a, b):
set counter to 0
repeat b times

add a to counter
output counter

Functions

● Why call it a black box?

● If we aren’t writing the functions ourselves, we don’t
need to know the underlying implementation.

● That’s part of the contract of using functions. The
behavior is typically predictable based on that name.
That’s why most functions have clear, obvious(ish)
names, and are well-documented.

Functions

● Why use functions?

● Organization

● Functions help break up a complicated problem into more
manageable subparts.

● Simplification

● Smaller components tend to be easier to design,
implement, and debug.

● Reusability

● Functions can be recycled; you only need to write them
once, but can use them as often as you need!

Functions

● Function Declarations

● The first step to creating a function is to declare it. This
gives the compiler a heads-up that a user-written
function appears in the code.

● Function declarations should always go atop your code,
before you begin writing main().

● There is a standard form that every function
declaration follows.

Functions

● Function Declarations

● The return-type is what kind of variable the
function will output.

● The name is what you want to call your function.

● The argument-list is the comma-separated set of
inputs to your function, each of which has a type and a
name.

return-type name(argument-list);

Functions

● A function to add two integers.

● The sum of two integers is going to be an integer as
well.

● Given what this function does, make sure to give it an
appropriate name.

● There are two inputs to this function, and we need to
give a name to each of them for purposes of the
function. There’s nothing important about these inputs
as far as we know, so giving them simple names is okay.

int add_two_ints(int a, int b);

Functions

● A function to multiply two floating point numbers.

Functions

● A function to multiply two floating point numbers.

● The product of two floating point numbers is also a
floating point number.

● Let’s be sure to give this a relevant name.

● Again, the names of these particular inputs don’t seem
to be important, so we can call them anything simple.

float mult_two_reals(float x, float y);

Functions

● A function to multiply two floating point numbers.

● The product of two floating point numbers is also a
floating point number.

● Let’s be sure to give this a relevant name.

● Again, the names of these particular inputs don’t seem
to be important, so we can call them anything simple.

double mult_two_reals(double x, double y);

Functions

● Function Definitions

● The second step to creating a function is to define it.
This allows for predictable behavior when the function
is called with inputs.

● Let’s try to define mult_two_reals(), from a
moment ago.

Functions

● A function definition looks almost identical to a
function declaration, with a small change.

● How would you fill in this black box?

float mult_two_reals(float x, float y);

float mult_two_reals(float x, float y)
{

float product = x * y;
return product;

}

Functions

● A function definition looks almost identical to a
function declaration, with a small change.

● How would you fill in this black box?

float mult_two_reals(float x, float y);

float mult_two_reals(float x, float y)
{

return x * y;
}

Functions

● Now, take a moment and try to define
add_two_ints(), from a moment ago.

int add_two_ints(int a, int b);

int add_two_ints(int a, int b)
{

}

Functions

● Now, take a moment and try to define
add_two_ints(), from a moment ago.

int add_two_ints(int a, int b);

int add_two_ints(int a, int b)
{

int sum; // declare variable
sum = a + b; // calculate the sum
return sum; // give result back

}

Functions

● Now, take a moment and try to define
add_two_ints(), from a moment ago.

int add_two_ints(int a, int b);

int add_two_ints(int a, int b)
{

int sum = a + b; // calc variable
return sum; // give result back

}

Functions

● Now, take a moment and try to define
add_two_ints(), from a moment ago.

int add_two_ints(int a, int b);

int add_two_ints(int a, int b)
{

int sum = 0;
if(a > 0)

for(int i = 0; i < a; sum++, i++);
else

for(int i = a; i < 0; sum--, i++);
if(b > 0)

for(int i = 0; i < b; sum++, i++);
else

for(int i = b; i < 0; sum--, i++);
return sum;

}

Functions

● Function Calls

● Now that you’ve created a function, time to use it!

● To call a function, simply pass it appropriate arguments
and assign its return value to something of the correct
type.

● To illustrate this, let’s have a look at adder-1.c

Functions

● Function Miscellany

● Recall from our discussion of data types that functions
can sometimes take no inputs. In that case, we declare
the function as having a void argument list.

● Recall also that functions sometimes do not have an
output. In that case, we declare the function as having
a void return type.

Functions

● Practice Problem

● Declare a write a function called valid_triangle
that takes three real numbers representing the lengths
of the three sides of a triangle as its arguments, and
outputs either true or false, depending on whether
those three lengths are capable of making a triangle.

● Note the following rules about triangles:

● A triangle may only have sides with positive length.

● The sum of the lengths of any two sides of the triangle must
be greater than the length of the third side.

Functions

bool valid_triangle(float x, float y, float z);

bool valid_triangle(float x, float y, float z)
{

// check for all positive sides
if (x <= 0 || y <= 0 || z <= 0)
{

return false;
}

// check that sum of any two sides greater than third
if ((x + y <= z) || (x + z <= y) || (y + z <= x))
{

return false;
}

// if we passed both tests, we’re good!
return true;

}

