
GDB



GDB

• GDB (the GNU Debugger) is an amazingly powerful tool that 
we can use to root out glitches in our programs.

• As a general rule, the output and interaction with GDB can be a 
bit idiosyncratic and cryptic.

• Fortunately, we’ve taken steps to solve this problem!

• If you aren’t using the graphical debugger, it’s useful to know 
how to work through your program with GDB’s command line 
interface.



GDB

• To kick things off with GDB, type

• That will pull up the GDB environment. From there, the next two 
major commands you’ll likely use (in order) are:

• Makes it so that once your program begins, it will run uninterrupted until it 
encounters the function with that name or hits that line number, at which 
point the program will pause execution and await further input.

• Runs the program with the command line arguments provided, if any.

gdb <program name>

b [function name, line number]

r [command-line arguments]



GDB

n Will step forward one block of code.

s Will step forward one line of code.

p [variable] Prints out the value of the variable given.

info locals Prints out the values of all local variables.

bt
Shows you what series of function calls have 

led you to the current point in the program.

q Quits GDB.



GDB

• Let’s try to use the text-based version of GDB inside CS50 IDE 
to debug a program called buggy1 (compiled from buggy1.c) 
which is, as its name suggests, buggy!



GDB

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int main(int argc, string argv[])

{

if (strcmp(“”, argv[1]))

{

printf(“You figured it out!\n”);

}

else

{

printf(“Sorry :-(\n”);

}

}


