
JavaScript

JavaScript

• Like PHP, JavaScript is a modern programming language
that is derived from the syntax at C.

• It has been around just about as long as PHP, also having
been invented in 1995.

• JavaScript, HTML, and CSS make up the three languages
defining most of the user experience on the web.

JavaScript

• To start writing JavaScript, open up a file with the .js file
extension.

• No need for any code delimiters like we had in PHP. Our
website will know that our file is JavaScript because we'll
explicitly tell it as much in an HTML tag.

• Unlike PHP which runs server-side, JavaScript applications run
client-side, on your own machine.

JavaScript

• Including JavaScript in your HTML

• Just like CSS with <style> tags, you can directly write your
JavaScript between <script> tags.

• Just like CSS with <link> tags, you can write your JavaScript in
separate files and link them in by using the src attribute of the
<script> tag.

JavaScript

• Including JavaScript in your HTML

• Just like CSS with <style> tags, you can directly write your
JavaScript between <script> tags.

• Just like CSS with <link> tags, you can write your JavaScript in
separate files and link them in by using the src attribute of the
<script> tag.

JavaScript

• Variables

• JavaScript variables are similar to PHP variables.
• No type specifier.

• When a local variable is first declared, preface with the var keyword.

JavaScript

• Variables

• JavaScript variables are similar to PHP variables.
• No type specifier.

• When a local variable is first declared, preface with the var keyword.

$x = 44;

JavaScript

• Variables

• JavaScript variables are similar to PHP variables.
• No type specifier.

• When a local variable is first declared, preface with the var keyword.

$x = 44;

JavaScript

• Variables

• JavaScript variables are similar to PHP variables.
• No type specifier.

• When a local variable is first declared, preface with the var keyword.

var x = 44;

JavaScript

• Conditionals

• All of the old favorites from C are still available for you to use.

if

JavaScript

• Conditionals

• All of the old favorites from C are still available for you to use.

if
else if

JavaScript

• Conditionals

• All of the old favorites from C are still available for you to use.

if
else if
else

JavaScript

• Conditionals

• All of the old favorites from C are still available for you to use.

if
else if
else

switch

JavaScript

• Conditionals

• All of the old favorites from C are still available for you to use.

if
else if
else

switch
?:

JavaScript

• Loops

• All of the old favorites from C are still available for you to use.

JavaScript

• Loops

• All of the old favorites from C are still available for you to use.

while

JavaScript

• Loops

• All of the old favorites from C are still available for you to use.

while
do-while

JavaScript

• Loops

• All of the old favorites from C are still available for you to use.

while
do-while

for

JavaScript

• Functions

• All functions are introduced with the function keyword.

• JavaScript functions, particularly those bound specifically to
HTML elements, can be anonymous—you don't have to give
them a name!
• We'll revisit anonymity a little later, and we'll revisit "binding to

HTML elements" in the video on the Document Object Model.

JavaScript

• Arrays

• Declaring an array is pretty straightforward.

JavaScript

• Arrays

• Declaring an array is pretty straightforward.

var nums = [1, 2, 3, 4, 5];

JavaScript

• Arrays

• Declaring an array is pretty straightforward.

var nums = [1, 2, 3, 4, 5];
var mixed = [1,

true,
3.333,
'five'];

JavaScript

• Objects

• JavaScript has the ability to behave as an object-oriented
programming language.

• An object is sort of analogous to a C structure.

JavaScript

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

JavaScript

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char model[10];

}

JavaScript

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char model[10];

}

struct car herbie;

JavaScript

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char model[10];

}

struct car herbie;
herbie.year = 1963;
herbie.model = "Beetle";

JavaScript

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char model[10];

}

struct car herbie;
year = 1963;
model = "Beetle";

JavaScript

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

struct car
{

int year;
char model[10];

}

struct car herbie;
year = 1963;
model = "Beetle";

JavaScript

• Objects

• C structures contain a number of fields, which we might also
call properties.
• But the properties themselves can not ever stand on their own.

• Objects, meanwhile, have properties but also methods, or
functions that are inherent to the object, and mean nothing
outside of it.
• Thus, like properties can methods not ever stand on their own.

JavaScript

• Objects

function(object);

JavaScript

• Objects

function(object);

JavaScript

• Objects

object.function();

JavaScript

• Objects

• The fields and methods of an object are similar in spirit to the
idea of an associative array, with which we're familiar from
PHP.

JavaScript

• Objects

• The fields and methods of an object are similar in spirit to the
idea of an associative array, with which we're familiar from
PHP.

var herbie = {year : 1963, model: 'Beetle'};

JavaScript

• Loops (redux)

• How do we iterate across all of the key-value pairs of an object
(or indeed, all of the elements of an array)?

JavaScript

• Loops (redux)

• How do we iterate across all of the key-value pairs of an object
(or indeed, all of the elements of an array)?

foreach($array as $key)
{

// use $key in here as a stand-in for $array[$i]
}

JavaScript

• Loops (redux)

• How do we iterate across all of the key-value pairs of an object
(or indeed, all of the elements of an array)?

foreach($array as $key)
{

// use $key in here as a stand-in for $array[$i]
}

JavaScript

• Loops (redux)

• How do we iterate across all of the key-value pairs of an object
(or indeed, all of the elements of an array)?

for (var key in object)
{

// use object[key] in here
}

JavaScript

• Loops (redux)

• How do we iterate across all of the key-value pairs of an object
(or indeed, all of the elements of an array)?

for (var key of object)
{

// use key in here
}

JavaScript

• Loops (redux)

var wkArray = ['Monday,
'Tuesday',
'Wednesday',
'Thursday',
'Friday',
'Saturday',
'Sunday'];

JavaScript

• Loops (redux)

var wkArray = ['Monday,
'Tuesday',
'Wednesday',
'Thursday',
'Friday',
'Saturday',
'Sunday'];

for (var day in wkArray)
{

console.log(day);
}

JavaScript

• Loops (redux)

var wkArray = ['Monday,
'Tuesday',
'Wednesday',
'Thursday',
'Friday',
'Saturday',
'Sunday'];

for (var day of wkArray)
{

console.log(day);
}

JavaScript

• Printing and variable interpolation

console.log(wkArray[day] . ' is day number '
. (day + 1) . ' of the week!');

JavaScript

• Printing and variable interpolation

console.log(wkArray[day] + ' is day number '
+ (day + 1) + ' of the week!');

JavaScript

• Printing and variable interpolation

console.log(wkArray[day] + ' is day number '
+ (day + 1) + ' of the week!');

JavaScript

• Printing and variable interpolation

console.log(wkArray[day] + ' is day number '
+ (parseInt(day) + 1) +
' of the week!');

JavaScript

• Functions (redux)

• Arrays are a special case of an object (in fact, everything in
JavaScript is a special case of an object), and has numerous
methods that can applied to them:
• array.size(), array.pop(), array.push(x),
array.shift();

• There is also a method for arrays called map(), which can be
used to apply a function to all elements of an array.
• A great situation to use an anonymous function

JavaScript

• Functions (redux)

var nums = [1, 2, 3, 4, 5];

JavaScript

• Functions (redux)

nums = nums.map(function(num) {

return num * 2;

});

var nums = [1, 2, 3, 4, 5];

JavaScript

• Functions (redux)

nums = nums.map(function(num) {

return num * 2;

});

var nums = [1, 2, 3, 4, 5];

JavaScript

• Functions (redux)

nums = nums.map(function(num) {

return num * 2;

});

var nums = [2, 4, 6, 8, 10];

JavaScript

• Events

• An event in HTML and JavaScript is a response to user
interaction with the web page.
• A user clicks a button, a page has finished loading, a user has

hovered over a portion of the page, the user typed in an input field.

• JavaScript has support for event handlers, which are callback
functions that respond to HTML events.
• Many HTML elements have support for events as an attribute.

JavaScript

<html>

<head>

<title>Event Handlers</title>

</head>

<body>

<button onclick="">Button 1</button>

<button onclick="">Button 2</button>
</body>

</html>

JavaScript

<html>

<head>

<title>Event Handlers</title>

</head>

<body>

<button onclick="">Button 1</button>

<button onclick="">Button 2</button>
</body>

</html>

JavaScript

• Events

• We can write a generic event handler in JavaScript, creating an
event object, that will tell us which of these two buttons was
clicked.

JavaScript

<html>

<head>

<title>Event Handlers</title>

</head>

<body>

<button onclick="alertName(event)">Button 1</button>

<button onclick="alertName(event)">Button 2</button>
</body>

</html>

JavaScript

function alertName(event)

{

var trigger = event.srcElement;

alert('You clicked on ' + trigger.innerHTML);

}

JavaScript

function alertName(event)

{

var trigger = event.srcElement;

alert('You clicked on ' + trigger.innerHTML);

}

JavaScript

function alertName(event)

{

var trigger = event.srcElement;

alert('You clicked on ' + trigger.innerHTML);

}

