
Queues



Queues

• A queue is a special type of structure that can be used to maintain 
data in an organized way.

• This data structure is commonly implemented in one of two ways: 
as an array or as a linked list.

• In either case, the important rule is that when data is added to the 
queue, it is tacked onto the end, and so if an element needs to be 
removed, the element at the front is the only element that can 
legally be removed.
• First in, first out (FIFO)



Queues

• There are only two operations that may legally be performed 
on a queue.

• Enqueue: Add a new element to the end of the queue.

• Dequeue: Remove the oldest element from the front of the queue.



Queues

• Array-based implementation

typedef struct _queue
{

VALUE array[CAPACITY];
int front;
int size;

}
queue;



Queues

• Array-based implementation

typedef struct _queue
{

VALUE array[CAPACITY];
int front;
int size;

}
queue;



Queues

• Array-based implementation

typedef struct _queue
{

VALUE array[CAPACITY];
int front;
int size;

}
queue;



Queues

• Array-based implementation

typedef struct _queue
{

VALUE array[CAPACITY];
int front;
int size;

}
queue;



Queues

• Array-based implementation

typedef struct _queue
{

VALUE array[CAPACITY];
int front;
int size;

}
queue;



Queues

• Array-based implementation

queue q;



Queues

• Array-based implementation

queue q;

q



Queues

• Array-based implementation

queue q;
q.front = 0;
q.size = 0;

q



Queues

• Array-based implementation

queue q;
q.front = 0;
q.size = 0;

0

0
q



Queues

• Array-based implementation
• Enqueue: Add a new element to the end of the queue.

In the general case, enqueue() needs to:
• Accept a pointer to the queue.

• Accept data of type VALUE to be added to the queue.

• Add that data to the queue at the end of the queue.

• Change the size of the queue.



Queues

• Array-based implementation

void enqueue(queue* q, VALUE data);

0

0
q



Queues

• Array-based implementation

enqueue(&q, 28);

0

0
q



Queues

• Array-based implementation

enqueue(&q, 28);

28

0

0
q



Queues

• Array-based implementation

enqueue(&q, 28);

28

0

1
q



Queues

• Array-based implementation

enqueue(&q, 33);

28

0

1
q



Queues

• Array-based implementation

enqueue(&q, 33);

28 33

0

1
q



Queues

• Array-based implementation

enqueue(&q, 33);

28 33

0

2
q



Queues

• Array-based implementation

enqueue(&q, 19);

28 33

0

2
q



Queues

• Array-based implementation

enqueue(&q, 19);

28 33 19

0

2
q



Queues

• Array-based implementation

enqueue(&q, 19);

28 33 19

0

3
q



Queues

• Array-based implementation
• Dequeue: Remove the most recent element from the front of the 

queue.

In the general case, dequeue() needs to:
• Accept a pointer to the queue.

• Change the location of the front of the queue.

• Decrease the size of the queue.

• Return the value that was removed from the queue.



Queues

• Array-based implementation

VALUE dequeue(queue* q);

28 33 19

0

3
q



Queues

• Array-based implementation

int x = dequeue(&q);

28 33 19

0

3
q



Queues

• Array-based implementation

int x = dequeue(&q);

33 19

0

3
q

28

x



Queues

• Array-based implementation

int x = dequeue(&q);

28 33 19

0

3
q

28

x



Queues

• Array-based implementation

int x = dequeue(&q);

28 33 19

1

2
q

28

x



Queues

• Array-based implementation

int x = dequeue(&q);

28 33 19

1

2
q

28

x



Queues

• Array-based implementation

int x = dequeue(&q);

28 33 19

1

2
q

33

x



Queues

• Array-based implementation

int x = dequeue(&q);

28 33 19

2

1
q

33

x



Queues

• Array-based implementation

enqueue(&q, 40);

28 33 19

2

1
q



Queues

• Array-based implementation

enqueue(&q, 40);

28 33 19 40

2

1
q



Queues

• Array-based implementation

enqueue(&q, 40);

28 33 19 40

2

2
q



Queues

• Linked list-based implementation

typedef struct _queue
{

VALUE val;
struct _queue *prev;
struct _queue *next;

}
queue;



Queues

• Just make sure to always maintain pointers to the head and tail 
of the linked list! (probably global)

• To enqueue:
• Dynamically allocate a new node;

• Set its next pointer to NULL, set its prev pointer to the tail;

• Set the tail’s next pointer to the new node;

• Move the tail pointer to the newly-created node.



Queues

enqueue(tail, 10);

12 15 9 13

head tail



Queues

enqueue(tail, 10);

12 15 9 13

head tail new



Queues

enqueue(tail, 10);

12 15 9 13 10

head tail new



Queues

enqueue(tail, 10);

12 15 9 13 10

head tail new



Queues

enqueue(tail, 10);

12 15 9 13 10

head tail new



Queues

enqueue(tail, 10);

12 15 9 13 10

head tail new



Queues

• To dequeue:
• Traverse the linked list to its second element (if it exists);

• Free the head of the list;

• Move the head pointer to the (former) second element;

• Make that node’s prev pointer point to NULL.



Queues

dequeue(head);

12 15 9 13 10

head tail



Queues

dequeue(head);

12 15 9 13 10

head tail

trav



Queues

dequeue(head);

12 15 9 13 10

head tail

trav



Queues

dequeue(head);

15 9 13 10

head tail

trav



Queues

dequeue(head);

15 9 13 10

head tail

trav



Queues

dequeue(head);

15 9 13 10

head tail

trav


