Recursion



Recursion

* We might describe an implementation of an algorithm as being
particularly “elegant” if it solves a problem in a way that is
both interesting and easy to visualize.

* The technique of recursion is a very common way to
implement such an “elegant” solution.

* The definition of a recursive function is one that, as part of its
execution, invokes itself.



Recursion

* The factorial function (n!) is defined over all positive integers.

* n! equals all of the positive integers less than or equal to n,
multiplied together.

* Thinking in terms of programming, we’ll define the
mathematical function n! as fact(n).



Recursion

fact(1l) =1

fact(2) = 2 * 1

fact(3) = 3 * 2 * 1

fact(4) = 4 * 3 * 2 * 1
fact(5) =5 * 4 * 3 * 2 * 1]



Recursion

fact(1l) =1

fact(2) = 2 * fact(1l)
fact(3) = 3 * 2 * 1

fact(4) = 4 * 3 % 2 * 1
fact(5) =5 * 4 * 3 * 2 * 1]



Recursion

fact(1l) =1

fact(2) = 2 * fact(1)
fact(3) = 3 * fact(2)
fact(4) = 4 * 3 * 2 * 1
fact(5) =5 * 4 * 3 *x 2 * 1]



Recursion

fact(1l) =1

fact(2) = 2 * fact(1)
fact(3) = 3 * fact(2)
fact(4) = 4 * fact(3)
fact(5) =5 * 4 * 3 *x 2 * 1]



Recursion

fact(1l) =1

fact(2) = 2 * fact(1)
fact(3) = 3 * fact(2)
fact(4) = 4 * fact(3)
fact(5) = 5 * fact(4)



Recursion

fact(n) = n * fact(n-1)



Recursion

* This forms the basis for a recursive definition of the factorial
function.

* Every recursive function has two cases that could apply, given
any input.
* The base case, which when triggered will terminate the recursive
pProcess.

* The recursive case, which is where the recursion will actually occur.



Recursion

fact(1l) =1

fact(2) = 2 * fact(1)
fact(3) = 3 * fact(2)
fact(4) = 4 * fact(3)
fact(5) = 5 * fact(4)



Recursion

int fact(int n)
{

// base case

// recursive case



Recursion

int fact(int n)

{
if (n == 1)
{
return 1;
}

// recursive case



Recursion

fact(1l) =1

fact(2) = 2 * fact(1)
fact(3) = 3 * fact(2)
fact(4) = 4 * fact(3)
fact(5) = 5 * fact(4)



Recursion

int fact(int n)

{
if (n == 1)
{
return 1;
}

// recursive case



Recursion

int fact(int n)

{
if (n == 1)
{
return 1;
}
else
{

return n * fact(n-1);



Recursion

int fact(int n)

{
if (n == 1)
{
return 1;
}
else
{

return n * fact(n-1);



Recursion

int fact(int n)
{
if (n == 1)
return 1;
else
return n * fact(n-1);



Recursion

* In general, but not always, recursive functions replace loops in
non-recursive functions.



Recursion

* In general, but not always, recursive functions replace loops in
non-recursive functions.

int fact(int n) int fact2(int n)
{ {
if (n == 1) int product = 1;
return 1; while(n > 0)
else {
return n * fact(n-1); product *= n;
} n--;
}

return product;



Recursion

* In general, but not always, recursive functions replace loops in
non-recursive functions.

* |It’s also possible to have more than one base or recursive case,
if the program might recurse or terminate in different ways,
depending on the input being passed in.



Recursion

* Multiple base cases: The Fibonacci number sequence is
defined as follows:
* The first element is O.
* The second element is 1.
* The nt" element is the sum of the (n-1)t" and (n-2)t" elements.

* Multiple recursive cases: The Collatz conjecture.



Recursion

* The Collatz conjecture is applies to positive integers and
speculates that it is always possible to get “back to 1” if you
follow these steps:

* If nis 1, stop.
* Otherwise, if n is even, repeat this process on n/2.
e Otherwise, if n is odd, repeat this process on 3n + 1.

* Write a recursive function collatz(n) that calculates how
many steps it takes to get to 1 if you start from n and recurse
as indicated above.



Recursion

o comtata(m | ses

1 0 1

2 1 221

3 7 3210252162>282>4>2->1

4 2 42221

5 5 52162>82>4>2->1

6 8 623210252162>282>4>2->1

7 16 72222>112342>172>522>2262>13240220210252162>8>4>2->1
8 3 824221

15 17 152462232702 ..28242>2->1
27 111 272822412 124> ..2824>2->1
50 24 502252762382 ..2824>2>1



Recursion

int collatz(int n)
{
// base case
if (n == 1)
return 9;
// even numbers
else if ((n % 2) == Q)
return 1 + collatz(n/2);
// odd numbers
else
return 1 + collatz(3*n + 1);



