SQL

SQL

e Often times, in order for us to build the most functional
website we can, we depend on a database to store
information.

* If you’'ve ever used Microsoft Excel or Google Spreadsheets
(among others), odds are you’re familiar with the notion of a
database: a hierarchically organized set of tables, each of
which contains a set of rows and columns.

SQL

* SQL (the Structured Query Language) is a programming
language whose purpose is to query a database.

 MySQL is an open-source platform on which you can establish
the type of relational database that SQL is most adept at
working with.

* Many installations of MySQL come with a GUI tool called
phpMyAdmin which can be used to execute database queries
in @ more user-friendly way.

SQL

* After you create a database, the next thing you’ll most likely
want to do is create a table.

* The syntax for doing this is actually a bit awkward to do
programmatically, at least at the outset, and so this is where
phpMyAdmin will come in handy.

* As part of the process of creating a table, you’ll be asked to
specify all of the columns in that table.

* Thereafter, all your queries will refer to rows of the table.

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

TINYINT MEDIUMINT BIGINT

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

| BLOB [TEXT || ENUM | GEOMETRY LINESTRING

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

SQL

* Each column of your SQL table is capable of holding data of a
particular data type.

SQL

* Unlike in C, the CHAR data type in SQL does not refer to a single
character. Rather, it is a fixed-length string.

* In most relational databases, including MySQL, you actually specify
the fixed-length as part of the type definition, e.g. CHAR(10).

* A VARCHAR refers to a variable-length string.

* VARCHARs also require you to specify the maximum possible length
of a string that could be stored in that column, e.g. VARCHAR(99).

SQL

* One other important consideration when constructing a table
in SQL is to choose one column to be your primary key.

* Primary keys enable rows of a table to be uniquely and quickly
identified.

* Choosing your primary key appropriately can make subsequent
operations on the table much easier.

* |t is also possible to establish a joint primary key — a
combination of two columns that is always guaranteed to be
unique.

SQL

* SQL is a programming language, but its vocabulary is fairly
limited.

* We will primarily consider just four operations that one may
perform on a table.

SQL

* SQL is a programming language, but its vocabulary is fairly
limited.

* We will primarily consider just four operations that one may
perform on a table.

INSERT

SQL

* SQL is a programming language, but its vocabulary is fairly
limited.

* We will primarily consider just four operations that one may
perform on a table.

INSERT
SELECT

SQL

* SQL is a programming language, but its vocabulary is fairly
limited.

* We will primarily consider just four operations that one may
perform on a table.

INSERT
SELECT
UPDATE

SQL

* SQL is a programming language, but its vocabulary is fairly
limited.

* We will primarily consider just four operations that one may
perform on a table.

INSERT
SELECT
UPDATE
DELETE

SQL

* INSERT

 Add information to a table.

SQL

* INSERT

 Add information to a table.

INSERT INTO
<table>
(<columns>)
VALUES
(<values>)

SQL

* INSERT

 Add information to a table.

INSERT INTO

users

(username, password, fullname)
VALUES

(‘newman’, €‘USMAIL’, ‘Newman’)

idnum username password fullname

moms

username mother

SQL

* When defining the column that ultimately ends up being your
table’s primary key, it’s usually a good idea to have that column
be an integer.

* Moreover, so as to eliminate the situation where you may
accidentally forget to specify a real value for the primary key
column, you can configure that column to autoincrement, so it
will pre-populate that column for you automatically when rows
are added to the table.

SQL

* INSERT

 Add information to a table.

INSERT INTO

moms

(username, mother)

VALUES

(‘kramer’, ‘Babs Kramer’)

SQL

* SELECT

e Extract information from a table.

SQL

* SELECT

e Extract information from a table.

SELECT
<columns>
FROM
<table>
WHERE
<condition>
ORDER BY
<column>

SQL

* SELECT

e Extract information from a table.

SELECT
<columns>
FROM
<table>
WHERE
<predicate>
ORDER BY
<column>

SQL

* SELECT

e Extract information from a table.

SELECT

idnum, fullname
FROM

users

idnum username password fullname

moms

username mother

SQL

* SELECT

e Extract information from a table.

SELECT
passwonrd
FROM

users
WHERE
idnum < 12

SQL

e SELECT
e Extract information from a table.
SELECT
3
FROM
moms
WHERE

username = ‘jerry’

SQL

* Databases empower us to organize information into tables
efficiently.

 We don’t always need to store every possible relevant piece of
information in the same table, but can use relationships across the
tables to let us pull information from where we need it.

SQL

* Databases empower us to organize information into tables
efficiently.

 We don’t always need to store every possible relevant piece of
information in the same table, but can use relationships across the
tables to let us pull information from where we need it.

* What if we now find ourselves in a situation where we need to
get a user’s full name (from the users table) and their mother’s
name (from the mother table).

SQL

* SELECT (JOIN)

e Extract information from multiple tables.

SQL

* SELECT (JOIN)

e Extract information from multiple tables.

SELECT
<columns>
FROM
<tablel>
JOIN
<table2>

ON
<predicate>

SQL

* SELECT (JOIN)

e Extract information from multiple tables.

SELECT

users.fullname, moms.mother
FROM

users

JOIN

moms

ON

users.username = moms.username

SQL

* SELECT (JOIN)

e Extract information from multiple tables.

SELECT

users.fullname, moms.mother
FROM

users

JOIN

moms

ON

users.username = moms.username

SQL

users
idnum username password fullname
10 jerry fus!ll! Jerry Seinfeld
gcostanza b0scO George Costanza

moms
username mother
jerry Helen Seinfeld
gcostanza Estelle Costanza

SQL

users

A0 jerry fustlt JerrySeinfeld

moms

jerry

gcostanza

SQL

users & moms

SQL

users & moms

SQL

 UPDATE

* Modify information in a table.

SQL

 UPDATE

* Modify information in a table.

UPDATE

<table>

SET

<column> = <value>
WHERE

<predicate>

SQL

 UPDATE

* Modify information in a table.

UPDATE

users

SET

password = ‘yadayada’
WHERE

idnum = 10

SQL

* DELETE

* Remove information from a table.

SQL

* DELETE

* Remove information from a table.

DELETE FROM
<table>
WHERE
<predicate>

SQL

* DELETE

* Remove information from a table.

DELETE FROM

users

WHERE

username = ‘newman’

SQL

* All of these operations are pretty easy to do in the graphical
interface of phpMyAdmin.

* We want a way to do this programmatically, not just typing SQL
commands into the “SQL” tab of phpMyAdmin.

* Fortunately, SQL integrates with PHP very well, by way of
functions like query ().

SQL

 After you’ve connected to your database with PHP (using a
process called MySQLi or PDO), you can make pass query
strings as arguments to functions in PHP and store the result
set In an associative array.

SQL

 After you’ve connected to your database with PHP (using a
process called MySQLi or PDO), you can make pass query
strings as arguments to functions in PHP and store the result
set In an associative array.

$results = query(“SELECT fullname FROM users WHERE idnum = 10”);

SQL

 After you’ve connected to your database with PHP (using a
process called MySQLi or PDO), you can make pass query
strings as arguments to functions in PHP and store the result
set In an associative array.

$results = query(“SELECT fullname FROM users WHERE idnum = 10”);

SQL

 After you’ve connected to your database with PHP (using a
process called MySQLi or PDO), you can make pass query
strings as arguments to functions in PHP and store the result
set In an associative array.

$results = query(“SELECT fullname FROM users WHERE idnum = 10”);

SQL

 After you’ve connected to your database with PHP (using a
process called MySQLi or PDO), you can make pass query
strings as arguments to functions in PHP and store the result
set In an associative array.

$results = query(“SELECT fullname FROM users WHERE idnum = 10”);

print(“Thanks for logging in, {$results[‘fullname’]}!”);

SQL

 After you’ve connected to your database with PHP (using a
process called MySQLi or PDO), you can make pass query
strings as arguments to functions in PHP and store the result
set In an associative array.

$results = query(“SELECT fullname FROM users WHERE idnum = ?”,
$ SESSION[“id”]);

print(“Thanks for logging in, {$results[‘fullname’]}!”);

SQL

 After you’ve connected to your database with PHP (using a
process called MySQLi or PDO), you can make pass query
strings as arguments to functions in PHP and store the result
set In an associative array.

* It’s also possible your result set might consist of multiple rows,
in which case the result set would be an array of associative
arrays, so just need to iterate through it!

SQL

<p>The moms of TV’s Seinfeld:</p>
<table>

<?php
$results = query(“SELECT mothers FROM moms”);

if($results !== false)
{

foreach($results as $result)

{
¥

print(“<tr><td>” . $result[‘mothers’] . “</td></tr>”);

¥

>

</table>

SQL

<p>The moms of TV’s Seinfeld:</p>
<table>

<?php
$results = query(“SELECT mothers FROM moms”);

if($results !== false)
{

foreach($results as $result)

{
¥

print(“<tr><td>” . $result[‘mothers’] . “</td></tr>”);

¥

P>

</table>

SQL

<p>The moms of TV’s Seinfeld:</p>
<table>

<?php
$results = query(“SELECT mothers FROM moms”);

if($results !== false)
{

foreach($results as $result)

{
¥

print(“<tr><td>” . $result[‘mothers’] . “</td></tr>”);

¥

P>

</table>

SQL

<p>The moms of TV’s Seinfeld:</p>
<table>

<?php
$results = query(“SELECT mothers FROM moms”);

if($results !== false)
{

foreach($results as $result)

{
¥

print(“<tr><td>” . $result[‘mothers’] . “</td></tr>”);

¥

?>

</table>

