
Structures



Structures

• Structures provide a way to unify several variables of different 
types into a single, new variable type which can be assigned its 
own type name.

• We use structures (structs) to group together elements of a 
variety of data types that have a logical connection.

• Think of a structure like a “super-variable”.



Structures

struct car

{

int year;

char model[10];

char plate[7];

int odometer;

double engine_size;

};



Structures

struct car

{

int year;

char model[10];

char plate[7];

int odometer;

double engine_size;

};



Structures

struct car

{

int year;

char model[10];

char plate[7];

int odometer;

double engine_size;

};



Structures

struct car

{

int year;

char model[10];

char plate[7];

int odometer;

double engine_size;

};



Structures

struct car

{

int year;

char model[10];

char plate[7];

int odometer;

double engine_size;

};



Structures

• Once we have defined a structure, which we typically do in 
separate .h files or atop our programs outside of any functions, 
we have effectively created a new type.

• That means we can create variables of that type using the 
familiar syntax.

• We can also access the various fields (also known as members) 
of the structure using the dot operator (.)



Structures

// variable declaration

struct car mycar;

// field accessing

mycar.year = 2011;

strcpy(mycar.plate, “CS50”);

mycar.odometer = 50505;



Structures

// variable declaration

struct car mycar;

// field accessing

mycar.year = 2011;

strcpy(mycar.plate, “CS50”);

mycar.odometer = 50505;



Structures

// variable declaration

struct car mycar;

// field accessing

mycar.year = 2011;

strcpy(mycar.plate, “CS50”);

mycar.odometer = 50505;



Structures

// variable declaration

struct car mycar;

// field accessing

mycar.year = 2011;

strcpy(mycar.plate, “CS50”);

mycar.odometer = 50505;



Structures

• Structures, like variables of all other data types, do not need to 
be created on the stack. We can dynamically allocate 
structures at run time if our program requires it.

• In order to access the fields of our structures in that situation, 
we first need to dereference the pointer to the structure, and 
then we can access its fields.



Structures

// variable declaration

struct car *mycar = malloc(sizeof(struct car));



Structures

// variable declaration

struct car *mycar = malloc(sizeof(struct car));

// field accessing

(*mycar).year = 2011;

strcpy((*mycar).plate, “CS50”);

(*mycar).odometer = 50505;



Structures

// variable declaration

struct car *mycar = malloc(sizeof(struct car));

// field accessing

(*mycar).year = 2011;

strcpy((*mycar).plate, “CS50”);

(*mycar).odometer = 50505;



Structures

// variable declaration

struct car *mycar = malloc(sizeof(struct car));

// field accessing

(*mycar).year = 2011;

strcpy((*mycar).plate, “CS50”);

(*mycar).odometer = 50505;



Structures

• This is a little annoying. And so as you might expect, there’s a 
shorter way!

• The arrow operator (->) makes this process easier. It’s an 
operator that does two things back-to-back:
• First, it dereferences the pointer on the left side of the operator.

• Second, it accesses the field on the right side of the operator.



Structures

// variable declaration

struct car *mycar = malloc(sizeof(struct car));

// field accessing

(*mycar).year = 2011;

strcpy((*mycar).plate, “CS50”);

(*mycar).odometer = 50505;



Structures

// variable declaration

struct car *mycar = malloc(sizeof(struct car));

// field accessing

mycar->year = 2011;

strcpy(mycar->plate, “CS50”);

mycar->odometer = 50505;


