
SQL
Please open

https://www.w3schools.com/sql/trysql.asp?filename=trysql_create_table

IN CHROME OR SAFARI (Otherwise, some examples won’t work)

What Should Stick
• Relational vs Non-Relational:

• The basic difference

• There are advantages to each

• Scenarios where each is preferred

• Basic SQL Syntax
• INSERT

• UPDATE

• WHERE

• GROUP/ORDER BY

• COUNT/SUM

• JOIN ON

Two books to rule them all
• Two books cover all of

human knowledge…

• Today, we will also cover
all of knowledge

Which makes me wonder why we’re here.
Just buy the book, you guys :)

Everything you need to know
• We also cover all of

knowledge:

• SQL and NoSQL

• However, remember
that SQL is just a
language

• The real distinction is
relational vs non-
relational

But first: Why have databases?

Why Databases?
• Why have a database?

• Excel… No Excel

• Put simply: hit ctrl+down
arrow in excel

• It tops out at 1 million entries

WHHHHY?

• It’s not even a power of 2…

So, what is a Database?

What is a Database?
• Well, it’s a big ‘ol file on the computer’s hard disk

• But aren’t databases things? Boxes I can kick?
• Nope. Any computer can have a database on it, or not

• Some happen to ONLY have a database on them, hence the naming

Immediate questions:

• How is the file structured?

• And what happens if the file is too big for memory? Or for the whole
computer?

CAP Theorem [You can’t have it all]
• Think of a particular service (Facebook, Netflix, Banking)

• Pick one to lose:
• Consistency- Users always get the most recent data

• Availability- Always get a response (even if out of date)

• Partition Tolerance- Keeps working if the network goes to heck

• Well, the network will go to heck, so which other one do you give up?

• That tells you a lot about your application and whether you want SQL
vs NoSQL

Note: If the network stays up you don’t have to choose, but other tradeoffs still exist: see the PACELC theorem

SQL vs NoSQL
Depends on the job

SQL
• Consistency- You’ll always see

up-to-date data

• ACID- The database will properly
handle [+10, -10], even if those
commands are interrupted

• Requires cross-referencing many
tables to understand an entry

• Hard to scale to multiple
machines

No SQL
• Availability- You’ll get something

reasonable

• ACID is negotiable- Maybe it’s
fine that edits to a Facebook
post get lost

• Duplicates data, but once you
find an entry you have it all

• Designed to scale to multiple
machines [easy sharding]

SQL
• Always uses the row/column

model

• All entries have same properties,
settled at database creation

• Built for never losing data, and
always being right

• Think: banking, shipping
records

No SQL
• Lots of different flavors, each

with pros and cons

• New features can be added to
single records, on the fly

• Can be very reliable, or can be
optimized for size/speed

• Think: Facebook posts, YouTube
videos

Relational vs Non-Relational
• The basic difference

• Row/Column, multiple tables on a single
machine

• Many formats, designed to be split to
multiple machines

• There are advantages to each
• Maturity vs Scalability

• Scenarios where each is preferred
• Banking is different than Twitter

SQL Syntax
Please open
https://www.w3schools.com/sql/trysql.asp?filename=trysql_create_table

IN CHROME OR SAFARI (Otherwise, some examples won’t work)

Overview
• This database tracks orders fulfilled by a European grocer during a

few months of 1996/1997

• It’s heavily normalized- rather than having customer data in the Order
table there’s a customerID. Customers are recorded in their own table

• Our path: Customers, Categories, Orders, OrderDetails

Customers Table

Customers
• Click on the Customers table

• See how it wrote SELECT * FROM
for us? The * gives us all columns

• Notice that any table can be
read as “Each [customer] has a
[Name], [Contact], [Address]…

• What data types should these
columns have?

Categories Table

Categories
• Let’s insert a new category
INSERT INTO Categories (colname,

colname) VALUES (v1,v2)

• Specifically, add a category
named Utensils and its
description

INSERT INTO Categories

(CategoryName, Description) VALUES

(‘Utensils’,’Forks, glasses’)

• These INSERT statements are
broadly how the database came
to exist in the first place

Orders Table

Orders
• There's a lot of normalization

going on…
• What was normalization?

• Also, there are a lot of entries.
Let's poke around…

SELECT * FROM [Orders] WHERE

EmployeeID == 4

SELECT * FROM [Orders] WHERE EmployeeID == 4 AND CustomerID=10

SELECT * FROM [Orders] WHERE EmployeeID == 4 OR CustomerID=10

Orders
SELECT * FROM [Orders] WHERE

CustomerID==34

• What’s this? Customer 34 is
cheating on Employee 4! Let’s
fix that

• Mistake:
UPDATE Orders SET EmployeeID=4

• Correct:
UPDATE Orders SET EmployeeID=4

WHERE CustomerID=34

Orders
• Hmmm, does a given customer

always have the same shipper?

SELECT ShipperID,CustomerID FROM

Orders ORDER BY CustomerID

• Notice that we can select only
the columns we care about

• What does ORDER BY do?

OrderDetails Table

RECAP
• SELECT – Workhorse. Get specific columns

• INSERT -- Useful. Add new rows

• UPDATE – Useful. Change an existing row

• WHERE -- Workhorse. Specify which
particular rows

• ORDER BY – Useful. How to sort the results

OrderDetails
• Neat, there are multiple order

details (products) per order!

• Up until now we’ve only seen
one (customer, shipper, etc) per
order

OrderDetails
• Which product is most popular?

Mistake:
SELECT Quantity,ProductID FROM

[OrderDetails] ORDER BY ProductID

New Trick:
SELECT ProductID,SUM(Quantity) FROM

[OrderDetails] GROUP BY ProductID

• Cool. But it orders by product.
How can we make it prettier?
SELECT ProductID,SUM(Quantity) FROM

[OrderDetails] GROUP BY ProductID

ORDER BY SUM(Quantity)

Extension

• In addition to SUM you can COUNT, MIN, MAX, or AVG
• Always wise to use these with GROUP BY

• DESC (Descending) can be added to ORDER BY to flip the order and
put the biggest values on top

What the heck is product 31, anyway?
• We can go look in the products

table ourselves, like savages

• Or…
SELECT * FROM OrderDetails JOIN

Products ON

OrderDetails.ProductID=Products.

ProductID

• Note that we do
TableName.ColumnName to
clarify

• Result is messy. I only want
Order, Product, Quantity,
Name… How do we do that?

RECAP
• SELECT – Workhorse. Get specific columns

• INSERT -- Useful. Add new rows

• UPDATE – Useful. Change an existing row

• WHERE -- Workhorse. Specify which particular rows

• ORDER BY – Useful. How to sort the results

• COUNT – Workhorse. The most fundamental kind of math

• SUM/MAX/MIN/AVG – Workhorse.

• GROUP BY – Workhorse. Combines to one response per unique entry

• JOIN – Workhorse. Ties two normalized tables back together

Syntax

SELECT a FROM b WHERE c GROUP BY d;

A- List the columns you want. Can be real columns or derived ones like
SUM(Quantity) or COUNT(ID)

B- Describe the table, often including one or more JOIN ___ ON ____

C- Describe the rows you care about, e.g. EmployeeID=5 AND …

D- Set which column(s) to group/order by. Very important for
counts/sums

Practice
Please open
https://www.w3schools.com/sql/trysql.asp?filename=trysql_create_table

IN CHROME OR SAFARI (Otherwise, some examples won’t work)

https://www.w3schools.com/sql/trysql.asp?filename=trysql_create_table

Practice Questions
• Q1: How many customers in Germany?

• A: 11

• Q2: How many units of product 29 did we ship?
• A: 168

• Q3: How many orders in October?
• A: 26. Research the BETWEEN clause

• Q4: Which country has the most customers?
• USA. But you should be able to tell me who is tied for 2nd

• Q5: Which country has the most orders?
• USA with 29. But should be able to tell me and verify the number in Belgium

• Q6: Which customer placed the most orders?
• Ernst Handel with 10

Practice Answers
• Q1: How many customers in Germany?

• SELECT * FROM Customers WHERE Country='Germany‘

• SELECT Count(*) FROM Customers WHERE Country='Germany'

• Q2: How many units of product 29 did we ship?
• SELECT Sum(Quantity) FROM [OrderDetails] where ProductID=29

• Q3: How many orders in October?
• SELECT Count(*) FROM [Orders] WHERE OrderDate BETWEEN '1996-10-01' AND

'1996-10-31‘

• Q4: Which country has the most customers?
• SELECT Count(*),Country FROM [Customers] GROUP BY Country

• Q5: Which country has the most orders?
• SELECT count(*),Customers.Country FROM [Orders] JOIN Customers on

Customers.CustomerID=Orders.CustomerID GROUP BY Customers.Country

• Q6: Which customer placed the most orders
• SELECT Count(*),CustomerName FROM Orders JOIN Customers ON

Customers.CustomerID=Orders.CustomerID GROUP BY Orders.CustomerID ORDER BY Count(*) DESC

Really tough question
• Q: Which employee shipped the most products from New England Seafood

Cannery?
• A: Employee 2 with 98 (More than everyone else combined)

SELECT SUM(Quantity),EmployeeID

FROM OrderDetails

JOIN Products on Products.ProductID=OrderDetails.ProductID

JOIN Suppliers on Suppliers.SupplierID=Products.ProductID

JOIN Orders on Orders.OrderID=OrderDetails.OrderID

WHERE Suppliers.SupplierName='New England Seafood Cannery'

GROUP BY EmployeeID

