
How to Prepare
Your Resume (and Yourself!)

for Technical Interviews

Today

• Choosing Companies

• Resumes

• Before the Interview

• During the Interview

• After the Interview

Choosing Companies

Questions to Ask Yourself

• What are you looking for out of an internship / full-time role?

• Would you be excited to get up every day and work on this project?

• Would you be excited to get up every day and work with this team?

• Do your values align with the company’s values?

• Does the company size fit with what you’re looking for?

Questions to Ask Yourself

• What are you looking for out of an internship / full-time role?

• Would you be excited to get up every day and work on this project?

• Would you be excited to get up every day and work with this team?

• Do your values align with the company’s values?

• Does the company size fit with what you’re looking for?

Questions to Ask Yourself

• Everyone is different

• Impact?

• Learning?

• Work-life balance?

• Location?

• Money?

Questions to Ask Yourself

• What are you looking for out of an internship / full-time role?

• Would you be excited to get up every day and work on this project?

• Would you be excited to get up every day and work with this team?

• Do your values align with the company’s values?

• Does the company size fit with what you’re looking for?

Questions to Ask Yourself

• Look at where the company & product is today

• Learn about where the company & product is going

• This can be even more important

Questions to Ask Yourself

• What are you looking for out of an internship / full-time role?

• Would you be excited to get up every day and work on this project?

• Would you be excited to get up every day and work with this team?

• Do your values align with the company’s values?

• Does the company size fit with what you’re looking for?

Questions to Ask Yourself

• Ask questions to your interviewers!

• This is useful for you, not just to look good

• Once you have an offer, ask to talk to prospective team members

• Chances are, your recruiter will offer!

Questions to Ask Yourself

• What are you looking for out of an internship / full-time role?

• Would you be excited to get up every day and work on this project?

• Would you be excited to get up every day and work with this team?

• Do your values align with the company’s values?

• Does the company size fit with what you’re looking for?

Questions to Ask Yourself

• Every company has a different set of values

• Defined as “what this company values more than other companies”

• What do you value?

• Collaboration?

• Growth?

• Scrappiness?

• Stability?

Questions to Ask Yourself

• What are you looking for out of an internship / full-time role?

• Would you be excited to get up every day and work on this project?

• Would you be excited to get up every day and work with this team?

• Do your values align with the company’s values?

• Does the company size fit with what you’re looking for?

Questions to Ask Yourself

Resumes

Not that important

30 seconds

10 Resume Rules

1. One page, no exceptions

2. Make it easy to skim

3. Make contact info obvious

4. Highlight specific accomplishments

5. Include interesting personal projects

10 Resume Rules

6. No charts or ratings

7. No objective

8. Use a professional email address

9. Include relevant links: LinkedIn, GitHub, portfolio

10. Don’t sweat aesthetics

Before the Interview

What to Expect

Timing

• Start interviewing as early as you can

• Common to interview in late summer / early fall

• Plan interviewing into your schedule

• It takes a lot of time

• Look for opportunities geared at your experience

• Larger companies have apprentice, first-year, etc. programs

Process

• Maybe: Online coding challenge (~30 minutes)

• Maybe: Take home (hours-days)

• Probably: Technical phone screen (45-60 minutes)

• Almost definitely: Onsite (3-5 interviews, 45-60 minutes each)

Types of Interviews

• Algorithms

• Coding

• Practical

• Systems Design

• Culture

Algorithm Interviews

• More about getting the algorithm than coding it up

• Problem is hard, but coding the solution is easy

Coding Interviews

• Problem seems simple, but implementation is complex

• Focus on getting the details right, bugs, corner cases

Practical Interviews

• Given an existing codebase, make changes to it

• Build something from scratch, using the language of your choice

• Much heavier emphasis on tools, debugging, workflow

Systems Design Interviews

• Technical design

• “How would you architect the Gmail app?”

• Product design

• “What’s the biggest feature missing from Gmail?”

Culture Interviews

• Looking back

• What were some of the hardest problems you solved?

• What would you do differently?

• Looking forward

• Why this company?

• What’s important to you?

Preparing for Interviews

Start with the Basics

• Practice decreases stress

• Choose a language, and stick with it as much as possible

• Learn syntax, builtins, and error messages

Start with the Basics

• Know how to:

• Create a function

• Define a class

• Work with strings

• Work with lists

• Work with trees

Start with the Basics

• Interview problems rarely have complex complexity

• Constant

• Logarithmic

• Linear

• Polynomial

• Exponential

Build your Toolbox

• Many problems reduce to a few core concepts:

• Recursion, Divide-and-Conquer

• Graph Searches

• Greedy Algorithms

• Strings

• Searching & Sorting

• Dynamic Programming

Build your Toolbox

• Tools you have at your disposal:

• Arrays, linked lists

• Hash tables

• Binary search

• Shortest-path algorithms

• Memoization

Simulate the Environment

• Do lots of practice problems, talking out loud without Google

• Time yourself, no cheating

• Look for patterns: bad at recursion? Then do more recursion

• Do practice interviews with friends

• Practice a variety of problems

• Then do more practice problems

During the Interview

Process, not output

The Icebreaker

• Interviews don’t just start with a coding problem

• Have a 1-3 minute introduction ready to go

• Practice decreases stress

• Don’t ramble

Approaching Technical Problems

• Do not panic

• Always tell your interviewer if you’ve seen the problem before

• Ask clarifying questions

• Do not make any unstated assumptions

• Verify you agree on the output for an example input

Approaching Technical Problems

• Continually think out loud, even if it feels weird

• Your interviewer cannot help you if you are silent

• Talk through multiple possible approaches

• If helpful, draw a diagram

Approaching Technical Problems

• Try to pattern-match against what you know

• Can we formulate this as a graph?

• Can we formulate this recursively?

• Can we use a binary search?

• Can we decompose and memoize sub-problems?

Approaching Technical Problems

• Think general before specific

• Don’t write out a list of corner cases first

• If your solution seems too complicated, it probably is

• Remember, these are designed to be solved in 30-45 minutes

Process, not output

Writing Code

• Constantly communicate your thought process

• Get something working first

• It is always better to leave with something rather than nothing

• Then, simplify and optimize

• Don’t rush, but don’t assume the initial problem is the entire interview

• Listen to your interviewer—they want to help!

Writing Code

• Code quality matters!

• Decompose into functions as needed

• Use readable variable names

• Factor out common logic

Process, not output

Testing Code

• Be the computer: run through the function verbally for some input

• Show that you can reason about your code without running it

• Proactively look for and fix bugs

Really Testing Code

• If you’re allowed to run your code on a computer:

• Write test cases

• Don’t just guess-and-check

• Print/debug relevant state to fix issues

Process, not output

Example Problem

Prompt

Let’s define a rotated array as a sorted array where the numbers
have all been rotated to the right some number of places, with
numbers wrapping around when they reach the end of the list.

[1, 2, 3, 4, 5] rotated 3 times is [3, 4, 5, 1, 2]

Given a rotated array, find the number of times it was rotated.

Approaching the Problem

• We are not panicking

• First, let’s confirm we understand the problem by giving an example

• So [2, 4, 6] rotated 2 times would be [4, 6, 2]? Okay great

• Next, ask clarifying questions

• This list will only have sorted integers? Okay great

Approaching the Problem

• Let’s look at the example again

• [1, 2, 3, 4, 5] rotated 3 times is [3, 4, 5, 1, 2]

• We want to find the number where both the left and right are larger

• This is just the minimum of the array! (Is it? Try another example)

• We could use linear search

• Sure, but can you do better?

Approaching the Problem

• We are still not panicking

• Toolbox time:

• Recursion, Divide-and-Conquer

• Graph Searches

• Greedy Algorithms

• Strings

• Binary Search

Approaching the Problem

• We are still not panicking

• Toolbox time:

• Recursion, Divide-and-Conquer

• Graph Searches

• Greedy Algorithms

• Strings

• Binary Search

Approaching the Problem

• Binary search works on a sorted list, and this list is kinda sorted

• We can just use binary search with a different search condition!

def count_rotations(rotated):

 low = 0

 high = len(rotated) - 1

 while low <= high:

 mid = (low + high) // 2

 if rotated[mid] <= rotated[high]:

 high = mid - 1

 elif rotated[mid] >= rotated[low]:

 low = mid + 1

def count_rotations(rotated):

 low = 0

 high = len(rotated) - 1

 while low <= high:

 mid = (low + high) // 2

 if rotated[mid] <= rotated[mid + 1] and

 rotated[mid] <= rotated[mid - 1]:

 return mid

 if rotated[mid] <= rotated[high]:

 high = mid - 1

 elif rotated[mid] >= rotated[low]:

 low = mid + 1

def count_rotations(rotated):

 low = 0

 high = len(rotated) - 1

 while low <= high:

 mid = (low + high) // 2

 if rotated[mid] <= rotated[(mid + 1) % len(rotated)] and

 rotated[mid] <= rotated[(mid - 1 + len(rotated)) % len(rotated)]:

 return mid

 if rotated[mid] <= rotated[high]:

 high = mid - 1

 elif rotated[mid] >= rotated[low]:

 low = mid + 1

def count_rotations(rotated):

 low = 0

 high = len(rotated) - 1

 while low <= high:

 if rotated[low] <= rotated[high]:

 return low

 mid = (low + high) // 2

 if rotated[mid] <= rotated[(mid + 1) % len(rotated)] and

 rotated[mid] <= rotated[(mid - 1 + len(rotated)) % len(rotated)]:

 return mid

 if rotated[mid] <= rotated[high]:

 high = mid - 1

 elif rotated[mid] >= rotated[low]:

 low = mid + 1

Writing Code

• Now, let’s run our code on the example input: [3, 4, 5, 1, 2]

• First we land on 5, doesn’t work

• 3 < 5, but 5 > 2, so we discard the left half

• Now we land on 1, which meets the condition!

• Answer is the index of 1, which is 3

Runtime

• Binary search is O(log n), so this must be too

• Just have this down cold!

• Do one last check for bugs before we say we’re done

After the Interview

The Reverse Interview

• This is very important!

• Have questions ready in advance that are not Google-able

• What does your typical day-to-day look like?

• Tell me about your team culture

• What would you change about your team?

• What’s something you were proud of shipping recently?

• What has your path at this company looked like?

Don’t Worry

• Interview performance is high-variance

• Everyone bombs interviews, so don’t get discouraged

• Each interview is an opportunity to practice and get better

• Do a self-retrospective after each one

Takeaways

Takeaways

• Have the basics down

• Build your toolbox

• Do lots of realistic practice problems

• Communicate a solution before writing code

• Verbally run your code and look for issues

Process, not output

How to Prepare
Your Resume (and Yourself!)

for Technical Interviews

