
1

Problem 1-8: Mario

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Recommended Reading ... 1

Academic Honesty ... 1

Reasonable ... 2

Not Reasonable .. 3

Assessment .. 4

Itsa Mario ... 4

Questions? Feel free to head to CS50 on Reddit1, CS50 on StackExchange2, or the CS50

Facebook group3.

Objectives

• Get further practice with loops and taking user input.

• Use terminal printing to communicate information to a user graphically.

Recommended Reading

• Pages 1 – 7, 9, and 10 of http://www.howstuffworks.com/c.htm.

• Chapters 1 – 5, 9, and 11 – 17 of Absolute Beginner’s Guide to C.

• Chapters 1 – 6 of Programming in C.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

1 https://www.reddit.com/r/cs50
2 http://cs50.stackexchange.com
3 https://www.facebook.com/groups/cs50

https://www.reddit.com/r/cs50
http://cs50.stackexchange.com
https://www.facebook.com/groups/cs50
https://www.facebook.com/groups/cs50
http://www.howstuffworks.com/c.htm
https://www.reddit.com/r/cs50
http://cs50.stackexchange.com
https://www.facebook.com/groups/cs50

Problem 1-8: Mario

2

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problems is not permitted (unless explicitly stated otherwise) except to the extent that you

may ask classmates and others for help so long as that help does not reduce to another

doing your work for you. Generally speaking, when asking for help, you may show your

code or writing to others, but you may not view theirs, so long as you and they respect

this policy’s other constraints. Collaboration on quizzes and tests is not permitted at all.

Collaboration on the final project is permitted to the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from your instructor. If a violation

of this policy is suspected and confirmed, your instructor reserves the right to impose local

sanctions on top of any disciplinary outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

Reasonable

• Communicating with classmates about problems in English (or some other spoken

language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code, such as by viewing, compiling,

or running his or her code, even on your own computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past years' quizzes, tests, and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own solutions to problems online so that others might help

you identify and fix a bug or other issue.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problems or

your own final project.

Problem 1-8: Mario

3

• Whiteboarding solutions to problems with others using diagrams or pseudocode but

not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem before (re-)submitting your

own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problems.

• Failing to cite (as with comments) the origins of code, writing, or techniques that you

discover outside of the course’s own lessons and integrate into your own work, even

while respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem when it is he or she, and not

you, who is struggling to solve it.

• Looking at another individual’s work during a quiz or test.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problems to individuals who might take this

course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problems online or elsewhere.

• Splitting a problem’s workload with another individual and combining your work (unless

explicitly authorized by the problem itself).

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

Problem 1-8: Mario

4

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem and basing your own solution on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

To obtain a passing grade in this course, all students must ordinarily submit all assigned

problems unless granted an exception in writing by the instructor.

Itsa Mario

Toward the end of World 1-1 in Nintendo’s Super Mario Brothers, Mario must ascend a

"half-pyramid" of blocks before leaping (if he wants to maximize his score) toward a flag

pole. Below is a screenshot.

Problem 1-8: Mario

5

Write, in a file called mario.c in your ~/workspace/unit1 directory, a program that

recreates this half-pyramid using hashes (#) for blocks. However, to make things more

interesting, first prompt the user for the half-pyramid’s height, a non-negative integer no

greater than 23 . (The height of the half-pyramid pictured above happens to be 8 .) If the

user fails to provide a non-negative integer no greater than 23 , you should re-prompt

for the same again. Then, generate (with the help of printf and one or more loops)

the desired half-pyramid. Take care to align the bottom-left corner of your half-pyramid

with the left-hand edge of your terminal window, as in the sample output below, wherein

underlined text represents some user’s input.

username@ide50:~/workspace/unit1 $./mario

height: 8

 ##

 ###

 ####

 #####

 ######

 #######

 ########

#########

Problem 1-8: Mario

6

Note that the rightmost two columns of blocks must be of the same height. No need to

generate the pipe, clouds, numbers, text, or Mario himself.

By contrast, if the user fails to provide a non-negative integer no greater than 23 ,

your program’s output should instead resemble the below, wherein underlined text again

represents some user’s input. (Recall that GetInt will handle some, but not all, re-

prompting for you.)

username@ide50:~/workspace/unit1 $./mario

Height: -2

Height: -1

Height: foo

Retry: bar

Retry: 1

##

To compile your program, remember that you can execute

make mario

or, more manually,

clang -o mario mario.c -lcs50

after which you can run your program with the below.

./mario

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 1516.unit1.mario mario.c

And if you’d like to play with the staff’s own implementation of mario, you may execute

the below.

Problem 1-8: Mario

7

~cs50/unit1/mario

Not sure where to begin? Not to worry. A walkthrough awaits!

https://www.youtube.com/watch?v=z32BxNe2Sfc

This was Problem 1-8.

https://www.youtube.com/watch?v=z32BxNe2Sfc

	Problem 1-8: Mario
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Itsa Mario

