
1

Problem 3-1: Fifteen (Part 1)

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Recommended Reading ... 2

Academic Honesty ... 2

Reasonable ... 2

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 5

Getting Started ... 5

Making Things Up .. 6

The Game Begins .. 8

Commentary .. 10

questions ... 10

fifteen ... 11

Questions? Feel free to head to CS50 on Reddit1, CS50 on StackExchange2, the

#cs50ap channel on CS50x Slack3 (after signing up), or the CS50 Facebook group4.

Objectives

• Accustom you to reading someone else’s code.

• Empower you with Makefiles.

• Practice debugging your code with more advanced techniques.

• Begin to implement a party favor.

1 https://www.reddit.com/r/cs50
2 http://cs50.stackexchange.com
3 https://cs50x.slack.com
4 https://www.facebook.com/groups/cs50

https://www.reddit.com/r/cs50
http://cs50.stackexchange.com
https://cs50x.slack.com
https://www.facebook.com/groups/cs50
https://www.reddit.com/r/cs50
http://cs50.stackexchange.com
https://cs50x.slack.com
https://www.facebook.com/groups/cs50

Problem 3-1: Fifteen (Part 1)

2

Recommended Reading

• Page 17 of http://www.howstuffworks.com/c.htm.

• Chapters 20 and 23 of Absolute Beginner’s Guide to C.

• Chapters 13, 15, and 18 of Programming in C.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problems is not permitted (unless explicitly stated otherwise) except to the extent that you

may ask classmates and others for help so long as that help does not reduce to another

doing your work for you. Generally speaking, when asking for help, you may show your

code or writing to others, but you may not view theirs, so long as you and they respect

this policy’s other constraints. Collaboration on quizzes and tests is not permitted at all.

Collaboration on the final project is permitted to the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from your instructor. If a violation

of this policy is suspected and confirmed, your instructor reserves the right to impose local

sanctions on top of any disciplinary outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

Reasonable

• Communicating with classmates about problems in English (or some other spoken

language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code, such as by viewing, compiling,

or running his or her code, even on your own computer.

http://www.howstuffworks.com/c.htm

Problem 3-1: Fifteen (Part 1)

3

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past years' quizzes, tests, and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own solutions to problems online so that others might help

you identify and fix a bug or other issue.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problems or

your own final project.

• Whiteboarding solutions to problems with others using diagrams or pseudocode but

not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem before (re-)submitting your

own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problems.

• Failing to cite (as with comments) the origins of code, writing, or techniques that you

discover outside of the course’s own lessons and integrate into your own work, even

while respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem when it is he or she, and not

you, who is struggling to solve it.

• Looking at another individual’s work during a quiz or test.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

Problem 3-1: Fifteen (Part 1)

4

• Providing or making available solutions to problems to individuals who might take this

course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problems online or elsewhere.

• Splitting a problem’s workload with another individual and combining your work (unless

explicitly authorized by the problem itself).

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem and basing your own solution on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

To obtain a passing grade in this course, all students must ordinarily submit all assigned

problems unless granted an exception in writing by the instructor.

Problem 3-1: Fifteen (Part 1)

5

Getting Ready

Have a more in-depth look at debugging techniques from Dan. (Odds are these 23 minutes

with Dan will save you hours over the course of the term, since GDB is a far better tool

than printf in many cases!)

https://www.youtube.com/watch?v=-G_klBQLgdc

Getting Started

Recall that, for almost all of Units 1 and 2, you started writing programs from scratch,

creating your own unit1 and unit2 directories with mkdir . For this problem, you’ll

instead download some "distribution code" (otherwise known as a "distro"), written by us,

and add your own lines of code to it. You’ll first need to read and understand our code,

though, so this problem set is as much about learning to read someone else’s code as it

is about writing your own!

Let’s get you started. Log into cs50.io5 and execute

update50

within a terminal window to make sure your workspace is up-to-date. If you somehow

closed your terminal window (and can’t find it!), make sure that Console is checked under

the View menu, then click the green, circled plus (+) in CS50 IDE’s bottom half, then select

New Terminal.

Next, execute

cd ~/workspace/unit3

at your prompt to ensure that you’re inside of unit3 (which is inside of workspace

which is inside of your home directory). Then execute

wget http://cdn.cs50.net/ap/1516/problems/3/1/fifteen.zip

5 https://cs50.io/

https://www.youtube.com/watch?v=-G_klBQLgdc
https://cs50.io/
https://cs50.io/

Problem 3-1: Fifteen (Part 1)

6

to download a ZIP of this problem’s distro into your workspace (with a command-line

program called wget). You should see a bunch of output followed by:

'fifteen.zip' saved

Confirm that you’ve indeed downloaded fifteen.zip by executing

ls

and then run

unzip fifteen.zip

to unzip the file. If you then run ls again, you should see that you have a newly unzipped

directory called fifteen as well. You can now delete the ZIP, with:

rm fifteen.zip

confirming your intent to delete that file, then proceed to execute

cd fifteen

followed by

ls

and you should see that the directory contains two files:

fifteen.c Makefile

Off we go!

Making Things Up

To kick things off, just

Problem 3-1: Fifteen (Part 1)

7

make fifteen

You shouldn’t have touched anything yet, so this program should compile with no trouble.

Recall that make automates compilation of your code so that you don’t have to execute

clang manually along with a whole bunch of switches. Notice, in fact, how make just

executed a pretty long command for you, per the tool’s output. However, as your programs

grow in size, make won’t be able to infer from context anymore how to compile your

code; you’ll need to start telling make how to compile your program, particularly when

they involve multiple source (i.e., .c) files. And so we’ll start relying on "Makefiles,"

configuration files that tell make exactly what to do.

Go ahead and look at the file called Makefile . This Makefile is essentially a list of

rules that we wrote for you that tells make how to build fifteen from fifteen.c for

you. The relevant lines appear below.

fifteen: fifteen.c

 clang -ggdb3 -O0 -std=c11 -Wall -Werror -o fifteen fifteen.c -lcs50 -lm

The first line tells make that the "target" called fifteen should be built by invoking the

second line’s command. Moreover, that first line tells make that fifteen is dependent

on fifteen.c , the implication of which is that make will only re-build fifteen on

subsequent runs if that file was modified since make last built fifteen . Neat time-

saving trick, eh? In fact, go ahead and execute the command below again, assuming you

haven’t modified fifteen.c .

make fifteen

You should be informed that fifteen is already up-to-date. Incidentally, know that the

leading whitespace on that second line is not a sequence of spaces but, rather, a tab.

Unfortunately, make requires that commands be preceded by tabs, so be careful not

to change them to spaces, else you may encounter strange errors! The -Werror flag,

recall, tells clang to treat warnings (bad) as though they’re errors (worse) so that you’re

forced (in a good, instructive way!) to fix them.

Let’s finish looking at that Makefile . Notice the line below.

Problem 3-1: Fifteen (Part 1)

8

all: fifteen

This target implies that you can build fifteen simply by executing the below.

make all

Even better, the below is equivalent (because make builds a Makefile 's first target

by default).

make

If only you could whittle this whole problem set down to a single command! Finally, notice

these last lines in Makefile :

clean:

 rm -f *.o a.out core fifteen log.txt

This target allows you to delete all files ending in .o or called core (more on that soon!),

fifteen , or log.txt simply by executing the command below.

make clean

Be careful not to add, say, *.c to that last line in Makefile ! (Why?) Any line,

incidentally, that begins with # is just a comment. This Makefile is not terribly complex…

but soon enough the principles we’ve just covered will make (pun intended!) our

programming lives much simpler.

The Game Begins

The Game of Fifteen is a puzzle played on a square, two-dimensional board with numbered

tiles that slide. The goal of this puzzle is to arrange the board’s tiles from smallest to

largest, left to right, top to bottom, with an empty space in board’s bottom-right corner,

as in the below.

Problem 3-1: Fifteen (Part 1)

9

Sliding any tile that borders the board’s empty space in that space constitutes a "move."

Although the configuration above depicts a game already won, notice how the tile

numbered 12 or the tile numbered 15 could be slid into the empty space. Tiles may not be

moved diagonally, though, or forcibly removed from the board.

Although other configurations are possible, we shall assume that this game begins with

the board’s tiles in reverse order, from largest to smallest, left to right, top to bottom, with

an empty space in the board’s bottom-right corner. If, however, and only if the board

contains an odd number of tiles (i.e., the height and width of the board are even), the

positions of tiles numbered 1 and 2 must be swapped, as in the below. The puzzle

is solvable from this configuration.

Problem 3-1: Fifteen (Part 1)

10

Okay, navigate your way to ~/workspace/unit3/fifteen , and take a look at

fifteen.c . Within this file is an entire framework for the Game of Fifteen. The challenge

up next is to complete this game’s implementation.

But first go ahead and compile the framework. (Can you figure out how?) And, even though

it’s not yet finished, go ahead and run the game. (Can you figure out how?) Odds are

you’ll want to run it in a larger terminal window than usual, which you can open clicking

the green plus (+) next to one of your code tabs and clicking New Terminal. Alternatively,

you can full-screen the terminal window toward the bottom of CS50 IDE’s UI (within the

UI’s "console") by clicking the Maximize icon in the console’s top-right corner.

Anyhow, it appears that the game is at least partly functional. Granted, it’s not much of a

game yet. But that’s where you come in!

Commentary

You’ll notice, if you have a look at the distro, that our fifteen.c file is woefully lacking in

comments. As we said upfront, part of this assignment is beginning to read and understand

code others have written for you, and so your first objective is to replace all of the TODO`s

you see scattered about `fifteen.c with actual comments that explain what

is happening in the game. Don’t treat this portion of the problem set lightly, and hopefully

the fact that we don’t provide comments here on some stuff that may not be immediately

apparent to you at first glance is a good reminder of just how important it is to provide

high-quality comments in your own code!

questions

Read over the code and comments that you’ve just prepared in fifteen.c and then

answer the questions below in questions.txt , which is a (nearly empty) text file that

we included for you inside of the distro’s fifteen directory. No worries if you’re not

quite sure how fprintf or fflush work; we’ll simply be using those to automate some

testing.

1. Besides 4 × 4 (which are Game of Fifteen’s dimensions), what other dimensions does

the framework allow?

2. With what sort of data structure is the game’s board represented?

3. What function is called to greet the player at game’s start?

4. What functions do you apparently need to implement?

Problem 3-1: Fifteen (Part 1)

11

fifteen

Alright, get to it, implement this game!

Err… maybe not at all of it. At least not yet. In this problem, you only need to implement

two of the functions: init and draw . (We’ll leave move and won alone for now.)

Any design decisions not explicitly prescribed herein (e.g., how much space you should

leave between numbers when printing the board) are intentionally left to you. Presumably

the board, when printed, should look something like the below, but we leave it to you to

implement your own vision.

15 14 13 12

11 10 9 8

 7 6 5 4

 3 1 2 _

Incidentally, recall that the positions of tiles numbered 1 and 2 should only start off swapped

(as they are in the 4 × 4 example above) if the board has an odd number of tiles (as does

the 4 × 4 example above). If the board has an even number of tiles, those positions should

not start off swapped. And so they do not in the 3 × 3 example below:

8 7 6

5 4 3

2 1 _

To test your implementation of fifteen , you can certainly try playing it. (Know that you

can force your program to quit by hitting ctrl-c.) But by the time you’ve completed this

portion of the problem, there won’t be terribly much you’ll be able to actually play. After all,

you’re only initializing and drawing the board here.

You’re welcome to write your own functions and even change the prototypes of functions

we wrote. But we ask that you not alter the flow of logic in main itself so that we can

Problem 3-1: Fifteen (Part 1)

12

automate some tests of your program once submitted. If in doubt as to whether some

design decision of yours might run counter to the staff’s wishes, simply reach out to your

teacher.

If you’d like to play with the staff’s own implementation of the full fifteen game, you

may execute the below.

~cs50/unit3/fifteen

If you’d like to see an even fancier version, one so good that it can play itself, try out the

below.

~cs50/unit3/fifteen-solver

Instead of typing a number at the game’s prompt, type GOD (for the so-called "God

Mode" implemented in many games of this sort, where the computer plays the game itself)

instead. Neat, eh?

And if you’d like to check the correctness of your program officially with check50 , you

may execute the below. Note that check50 assumes that your board’s blank space

is implemented in board as 0 ; if you’ve chosen some other value, best to change

to 0 for check50 's sake. Also note that check50 assumes that you’re indexing

into board a la board[row][column] , not board[column][row] .

check50 1516.unit3.fifteen1 fifteen.c

Notice that 1 in fifteen1 … it’s not a typo!

This was Problem 3-1.

	Problem 3-1: Fifteen (Part 1)
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	Getting Started
	Making Things Up
	The Game Begins
	Commentary
	questions
	fifteen

