
1

Problem 3-2: Fifteen (Part 2)

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Recommended Reading ... 1

Academic Honesty ... 2

Reasonable ... 2

Not Reasonable .. 3

Assessment .. 4

Getting Ready .. 4

On Your Mark, Get Set… .. 5

Option 1: Start from a Clean Slate ... 5

Option 2: Extend Your Game ... 8

The Game Continues ... 8

Questions? Feel free to head to CS50 on Reddit1, CS50 on StackExchange2, the

#cs50ap channel on CS50x Slack3 (after signing up), or the CS50 Facebook group4.

Objectives

• Accustom you to reading someone else’s code.

• Empower you with Makefiles.

• Practice debugging your code with more advanced techniques.

• Finish implementing a party favor.

Recommended Reading

• Page 17 of http://www.howstuffworks.com/c.htm.

1 https://www.reddit.com/r/cs50
2 http://cs50.stackexchange.com
3 https://cs50x.slack.com
4 https://www.facebook.com/groups/cs50

https://www.reddit.com/r/cs50
http://cs50.stackexchange.com
https://cs50x.slack.com
https://www.facebook.com/groups/cs50
http://www.howstuffworks.com/c.htm
https://www.reddit.com/r/cs50
http://cs50.stackexchange.com
https://cs50x.slack.com
https://www.facebook.com/groups/cs50

Problem 3-2: Fifteen (Part 2)

2

• Chapters 20 and 23 of Absolute Beginner’s Guide to C.

• Chapters 13, 15, and 18 of Programming in C.

Academic Honesty

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problems is not permitted (unless explicitly stated otherwise) except to the extent that you

may ask classmates and others for help so long as that help does not reduce to another

doing your work for you. Generally speaking, when asking for help, you may show your

code or writing to others, but you may not view theirs, so long as you and they respect

this policy’s other constraints. Collaboration on quizzes and tests is not permitted at all.

Collaboration on the final project is permitted to the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from your instructor. If a violation

of this policy is suspected and confirmed, your instructor reserves the right to impose local

sanctions on top of any disciplinary outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

Reasonable

• Communicating with classmates about problems in English (or some other spoken

language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code, such as by viewing, compiling,

or running his or her code, even on your own computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

Problem 3-2: Fifteen (Part 2)

3

• Reviewing past years' quizzes, tests, and solutions thereto.

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own solutions to problems online so that others might help

you identify and fix a bug or other issue.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problems or

your own final project.

• Whiteboarding solutions to problems with others using diagrams or pseudocode but

not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem before (re-)submitting your

own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problems.

• Failing to cite (as with comments) the origins of code, writing, or techniques that you

discover outside of the course’s own lessons and integrate into your own work, even

while respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem when it is he or she, and not

you, who is struggling to solve it.

• Looking at another individual’s work during a quiz or test.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problems to individuals who might take this

course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problems online or elsewhere.

Problem 3-2: Fifteen (Part 2)

4

• Splitting a problem’s workload with another individual and combining your work (unless

explicitly authorized by the problem itself).

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem and basing your own solution on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

To obtain a passing grade in this course, all students must ordinarily submit all assigned

problems unless granted an exception in writing by the instructor.

Getting Ready

Have a more in-depth look at debugging techniques from Dan. (Odds are these 23 minutes

with Dan will save you hours over the course of the term, since GDB is a far better tool

than printf in many cases!)

https://www.youtube.com/watch?v=-G_klBQLgdc

https://www.youtube.com/watch?v=-G_klBQLgdc

Problem 3-2: Fifteen (Part 2)

5

On Your Mark, Get Set…

Unlike any other problem you’ve worked on up through this point in the course, this problem

has been split into multiple parts. And that means you need to carry your work from the

previous problem to this one. Maybe that’s a good thing… perhaps you enjoyed working

on Part 1 of the Game of Fifteen and can’t wait to conclude it here. But perhaps you didn’t

do well on it, and dread the thought.

It is certainly not our goal to let the struggles you encountered in the past cascade and

create even more trouble for you in the future. And to that end, any time you encounter

a split problem like this in CS50 AP (or indeed any time prior work is necessary in a

subsequent problem) you’ll always have the opportunity for a clean slate by using a partial

staff solution to get you going.

Below are two options for getting started with this problem. The first option is for those

who wish to start with the staff’s implementation of init and draw from Problem 3-15

already implemented for them. The second option is for those who wish to complete their

own implementation of the Game of Fifteen, relying on their own solution to Problem 3-1

as their foundation. Only choose one of the below two options, though if you choose

Option 2 you may still be interested in reading up on what your classmates who choose

Option 1 are doing, particularly as it is an early loo

Then, after having chosen your option and followed all the steps therein, pick up at "The

Game Concludes".

But first, in either case, log into cs50.io6 and execute

update50

within a terminal window to make sure your workspace is up-to-date.

Option 1: Start from a Clean Slate

Remember all that stuff about Makefiles that we talked about in the last problem? And how

the Makefile for the fifteen program was pretty simple, all things considered? Well,

5 http://cdn.cs50.net/ap/1516/problems/3/1/3-1.html
6 https://cs50.io/

http://cdn.cs50.net/ap/1516/problems/3/1/3-1.html
https://cs50.io/
http://cdn.cs50.net/ap/1516/problems/3/1/3-1.html
https://cs50.io/

Problem 3-2: Fifteen (Part 2)

6

you’re about to encounter a slightly more complex Makefile which will in turn help you

learn more about them, because you’ll be downloading the staff’s object code (remember

what that is?), not our source code, and putting those two files together to create a single

executable. How exciting!

To begin, in your terminal window, execute

cd ~/workspace/unit3

at your prompt to ensure that you’re inside of unit3 (which is inside of workspace

which is inside of your home directory). Then execute

wget http://cdn.cs50.net/ap/1516/problems/3/2/fifteen2.zip

to download a ZIP of this problem’s distro into your workspace (with a command-line

program called wget). You should see a bunch of output followed by:

'fifteen2.zip' saved

Confirm that you’ve indeed downloaded fifteen2.zip by executing

ls

and then run

unzip fifteen2.zip

to unzip the file. If you then run ls again, you should see that you have a newly unzipped

directory called fifteen2 as well. You can now delete the ZIP, with:

rm fifteen2.zip

confirming your intent to delete that file, then proceed to execute

cd fifteen2

Problem 3-2: Fifteen (Part 2)

7

followed by

ls

and you should see that the directory contains four files:

Makefile fifteen.c fifteen.h staff.o

staff.o is the aforementioned object file. Take care not to delete this file, as it

contains the staff’s implementations of draw , and init as the 0s and 1s of binary that

your computer understands (but not the C code you’ve been writing).

fifteen.h is a user-made "header file", similar in spirit to some of the header files with

which you’re familiar by this point, such as stdio.h or ctype.h . Because of wanting

to give you access to some staff code, we had to change the way we organize information

in the Game of Fifteen. If you open up fifteen.h , you’ll see that all of our #include

and #define lines, as well as our function and global variable declarations have moved

here. If you declare any new functions or global variables in completing this problem, make

certain to place those declarations in fifteen.h .

fifteen.c , you’ll note, looks a bit different, too. It includes fifteen.h only, the

comments have been deliberately removed from main to make the code slightly shorter,

and space for the implementations for draw and init have been removed (the resulting

object code we wrote for those implementations now lives in staff.o . Now only the

TODO placeholders for move and won remain.

Pop open Makefile (remember how), and notice how it is slightly different than the

Makefile you saw in the last problem. Now, our fifteen executable has three

dependencies:

fifteen: fifteen.c fifteen.h staff.o

 clang -ggdb3 -O0 -std=c11 -Wall -Werror -o fifteen fifteen.c staff.o -lcs50

 -lm

Thus notice that this time, make will only attempt to recompile fifteen if either

fifteen.c changes (it very probably will!), fifteen.h changes (it might) staff.o

changes (it hopefully won’t!)

Problem 3-2: Fifteen (Part 2)

8

We also removed the option to make clean from this Makefile , to minimize the

likelihood that you might accidentally delete staff.o , as recall that one of the things

make clean does is to forcibly (without double-checking) delete all files with the .o

extension.

Note that if you elect to use Option 1, you’re obligated to adhere to some of the

design choices we made when solving this problem. In particular, know that we

decided that the board’s blank space is implemented in board as 0 (and so you

must now do the same) and we index into board a la board[row][column] , not

board[column][row] .

Option 2: Extend Your Game

Execute

cd ~/workspace/unit3/fifteen

which should have been created in the last problem. Next type

ls

and you should see that the directory contains three (or four, depending on whether your

executable remains in the directory from the first half of this problem) files.

Makefile fifteen* fifteen.c questions.txt

The fifteen executable file may not be present, and that’s okay. But the other three

should be. questions.txt , in fact, should be completely filled in and fifteen.c

should have its init and draw functions implemented.

The Game Continues

Recall that the Game of Fifteen is a puzzle played on a square, two-dimensional board

with numbered tiles that slide. The goal of this puzzle is to arrange the board’s tiles from

smallest to largest, left to right, top to bottom, with an empty space in board’s bottom-right

corner, as in the below.

Problem 3-2: Fifteen (Part 2)

9

Sliding any tile that borders the board’s empty space in that space constitutes a "move."

Although the configuration above depicts a game already won, notice how the tile

numbered 12 or the tile numbered 15 could be slid into the empty space. Tiles may not be

moved diagonally, though, or forcibly removed from the board.

Your objective here is to complete the implementation of fifteen by implementing two

functions: move , which simulates the action of sliding a tile around the board; and won ,

which determines if the game is in a winning state.

To test your implementation of fifteen , you can certainly try playing it. (Know that

you can force your program to quit by hitting ctrl-c.) Be sure that you (and we) cannot

crash your program, as by providing bogus tile numbers. And know that it is possible for

you to automate execution of this game. In fact, in ~cs50/unit3 are 3x3.txt and

4x4.txt , winning sequences of moves for a 3 × 3 board and a 4 × 4 board, respectively.

To test your program with, say, the first of those inputs, execute the below.

./fifteen 3 < ~cs50/pset3/3x3.txt

Feel free to tweak the appropriate argument(s) to usleep to speed up animation

for testing, if you wish. In fact, you’re welcome to alter the aesthetics of the

game. For (optional) fun with "ANSI escape sequences," including color, take a look

at our implementation of clear and check out http://isthe.com/chongo/tech/comp/

ansi_escapes.html for more tricks.

You’re welcome to write your own functions and even change the prototypes of functions

we wrote (though, if using the staff solution as your starting point, it would not be wise to

modify the prototypes of init or draw !). But we ask that you not alter the flow of logic

http://isthe.com/chongo/tech/comp/ansi_escapes.html
http://isthe.com/chongo/tech/comp/ansi_escapes.html

Problem 3-2: Fifteen (Part 2)

10

in main itself so that we can automate some tests of your program once submitted. In

particular, main must only returns 0 if and when the user has actually won the game;

non-zero values should be returned in any cases of error, as implied by our distribution

code. If in doubt as to whether some design decision of yours might run counter these

wishes, simply reach out to your teacher.

Finally, here are some tips from Zamyla. First, for move :

https://www.youtube.com/watch?v=gxMHcoBMiq4

And also for won :

https://www.youtube.com/watch?v=6KSq4JUfhIk

If you’d like to play with the staff’s own implementation of the full fifteen game, you

may execute the below.

~cs50/unit3/fifteen

If you’d like to see an even fancier version, one so good that it can play itself, try out the

below.

~cs50/unit3/fifteen-solver

Instead of typing a number at the game’s prompt in the latter, type GOD (named for the

so-called "God Mode" implemented in many games of this sort, where the computer plays

the game itself) instead. Neat, eh?

This was Problem 3-2.

https://www.youtube.com/watch?v=gxMHcoBMiq4
https://www.youtube.com/watch?v=6KSq4JUfhIk

	Problem 3-2: Fifteen (Part 2)
	Table of Contents
	Objectives
	Recommended Reading
	Academic Honesty
	Reasonable
	Not Reasonable

	Assessment
	Getting Ready
	On Your Mark, Get Set…
	Option 1: Start from a Clean Slate
	Option 2: Extend Your Game

	The Game Continues

