
1

Problem 4-5: Grow

This is CS50. Harvard University. Fall 2014.

Table of Contents

Objectives ... 1

Recommended Reading* ... 1

Reasonable ... 2

Not Reasonable .. 3

Assessment .. 4

Getting Started ... 4

Refresher Course ... 5

(Re)size Matters ... 9

Questions? Feel free to head to CS50 on Reddit1, CS50 on StackExchange2, the

#cs50ap channel on CS50x Slack3 (after signing up), or the CS50 Facebook group4.

Objectives

• Acquaint you with file I/O.

• Get you more comfortable with data structures, hexadecimal

• Gently introduce pointers.

Recommended Reading*

• Chapters 18, 24, 25, 27, and 28 of Absolute Beginner’s Guide to C

• Chapters 9, 11, 14, and 16 of Programming in C

• http://www.cprogramming.com/tutorial/cfileio.html

• http://en.wikipedia.org/wiki/BMP_file_format

1 https://www.reddit.com/r/cs50
2 http://cs50.stackexchange.com
3 https://cs50x.slack.com
4 https://www.facebook.com/groups/cs50

https://www.reddit.com/r/cs50
http://cs50.stackexchange.com
https://cs50x.slack.com
https://www.facebook.com/groups/cs50
http://www.cprogramming.com/tutorial/cfileio.html
http://en.wikipedia.org/wiki/BMP_file_format
https://www.reddit.com/r/cs50
http://cs50.stackexchange.com
https://cs50x.slack.com
https://www.facebook.com/groups/cs50

Problem 4-5: Grow

2

• http://en.wikipedia.org/wiki/Hexadecimal

• http://en.wikipedia.org/wiki/Jpg

* The Wikipedia articles are a bit dense; feel free to skim or skip!

This course’s philosophy on academic honesty is best stated as "be reasonable." The

course recognizes that interactions with classmates and others can facilitate mastery of

the course’s material. However, there remains a line between enlisting the help of another

and submitting the work of another. This policy characterizes both sides of that line.

The essence of all work that you submit to this course must be your own. Collaboration on

problems is not permitted (unless explicitly stated otherwise) except to the extent that you

may ask classmates and others for help so long as that help does not reduce to another

doing your work for you. Generally speaking, when asking for help, you may show your

code or writing to others, but you may not view theirs, so long as you and they respect

this policy’s other constraints. Collaboration on quizzes and tests is not permitted at all.

Collaboration on the final project is permitted to the extent prescribed by its specification.

Below are rules of thumb that (inexhaustively) characterize acts that the course considers

reasonable and not reasonable. If in doubt as to whether some act is reasonable, do not

commit it until you solicit and receive approval in writing from your instructor. If a violation

of this policy is suspected and confirmed, your instructor reserves the right to impose local

sanctions on top of any disciplinary outcome that may include an unsatisfactory or failing

grade for work submitted or for the course itself.

Reasonable

• Communicating with classmates about problems in English (or some other spoken

language).

• Discussing the course’s material with others in order to understand it better.

• Helping a classmate identify a bug in his or her code, such as by viewing, compiling,

or running his or her code, even on your own computer.

• Incorporating snippets of code that you find online or elsewhere into your own code,

provided that those snippets are not themselves solutions to assigned problems and

that you cite the snippets' origins.

• Reviewing past years' quizzes, tests, and solutions thereto.

http://en.wikipedia.org/wiki/Hexadecimal
http://en.wikipedia.org/wiki/Jpg

Problem 4-5: Grow

3

• Sending or showing code that you’ve written to someone, possibly a classmate, so that

he or she might help you identify and fix a bug.

• Sharing snippets of your own solutions to problems online so that others might help

you identify and fix a bug or other issue.

• Turning to the web or elsewhere for instruction beyond the course’s own, for references,

and for solutions to technical difficulties, but not for outright solutions to problems or

your own final project.

• Whiteboarding solutions to problems with others using diagrams or pseudocode but

not actual code.

• Working with (and even paying) a tutor to help you with the course, provided the tutor

does not do your work for you.

Not Reasonable

• Accessing a solution to some problem prior to (re-)submitting your own.

• Asking a classmate to see his or her solution to a problem before (re-)submitting your

own.

• Decompiling, deobfuscating, or disassembling the staff’s solutions to problems.

• Failing to cite (as with comments) the origins of code, writing, or techniques that you

discover outside of the course’s own lessons and integrate into your own work, even

while respecting this policy’s other constraints.

• Giving or showing to a classmate a solution to a problem when it is he or she, and not

you, who is struggling to solve it.

• Looking at another individual’s work during a quiz or test.

• Paying or offering to pay an individual for work that you may submit as (part of) your

own.

• Providing or making available solutions to problems to individuals who might take this

course in the future.

• Searching for, soliciting, or viewing a quiz’s questions or answers prior to taking the

quiz.

• Searching for or soliciting outright solutions to problems online or elsewhere.

• Splitting a problem’s workload with another individual and combining your work (unless

explicitly authorized by the problem itself).

Problem 4-5: Grow

4

• Submitting (after possibly modifying) the work of another individual beyond allowed

snippets.

• Submitting the same or similar work to this course that you have submitted or will submit

to another.

• Using resources during a quiz beyond those explicitly allowed in the quiz’s instructions.

• Viewing another’s solution to a problem and basing your own solution on it.

Assessment

Your work on this problem set will be evaluated along four axes primarily.

Scope

To what extent does your code implement the features required by our specification?

Correctness

To what extent is your code consistent with our specifications and free of bugs?

Design

To what extent is your code written well (i.e., clearly, efficiently, elegantly, and/or

logically)?

Style

To what extent is your code readable (i.e., commented and indented with variables

aptly named)?

To obtain a passing grade in this course, all students must ordinarily submit all assigned

problems unless granted an exception in writing by the instructor.

Getting Started

Welcome back!

As always, first open a terminal window and execute

update50

to make sure your workspace is up-to-date.

Next, navigate to your ~/workspace/unit4 directory. Instead of downloading a new

distro for this assignment, we’re going to recursively copy the distro we prepared for

Problem 4-5: Grow

5

Problem 4-45. If you don’t already have that distro, head to the link and download it and

unzip the ZIP file according to the instructions there. Confirm you have a whodunit

directory as with

ls

Then, from within your ~/workspace/unit4 directory, execute the following:

cp -r whodunit grow

This will copy the entire contents of the whodunit directory into a newly-created directory

called grow . If you navigate inside the new grow directory, you should find that it is an

exact duplicate of what was in your whodunit directory. Since we’ll be using nearly all

of the same files, this is good. We can delete a few files though, and we do so by way

of the following command:

rm -f clue.bmp whodunit.c verdict.bmp

Make sure, though, that after executing that command your directory contains at least the

following files:

bmp.h copy.c large.bmp small.bmp smiley.bmp

Off we go!

Refresher Course

Recall from Problem 4-4 that a file is just a sequence of bits, arranged in some fashion.

A 24-bit BMP file, then, is essentially just a sequence of bits, (almost) every 24 of

which happen to represent some pixel’s color. But a BMP file also contains some

"metadata," information like an image’s height and width. That metadata is stored at

the beginning of the file in the form of two data structures generally referred to as

"headers" (not to be confused with C’s header files). (Incidentally, these headers have

evolved over time. This problem set only expects that you support version 4.0 (the latest)

5 http://cdn.cs50.net/ap/1516/problems/4/4/4-4.html

http://cdn.cs50.net/ap/1516/problems/4/4/4-4.html
http://cdn.cs50.net/ap/1516/problems/4/4/4-4.html

Problem 4-5: Grow

6

of Microsoft’s BMP format, which debuted with Windows 95.) The first of these headers,

called BITMAPFILEHEADER , is 14 bytes long. (Recall that 1 byte equals 8 bits.) The

second of these headers, called BITMAPINFOHEADER , is 40 bytes long. Immediately

following these headers is the actual bitmap: an array of bytes, triples of which represent

a pixel’s color. (In 1-, 4-, and 16-bit BMPs, but not 24- or 32-, there’s an additional header

right after BITMAPINFOHEADER called RGBQUAD , an array that defines "intensity values"

for each of the colors in a device’s palette.) However, BMP stores these triples backwards

(i.e., as BGR), with 8 bits for blue, followed by 8 bits for green, followed by 8 bits for red.

(Some BMPs also store the entire bitmap backwards, with an image’s top row at the end

of the BMP file. But we’ve stored this problem set’s BMPs as described herein, with each

bitmap’s top row first and bottom row last.) In other words, were we to convert the 1-

bit smiley above to a 24-bit smiley, substituting red for black, a 24-bit BMP would store

this bitmap as follows, where 0000ff signifies red and ffffff signifies white; we’ve

highlighted in red all instances of 0000ff .

ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff

0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff

0000ff ffffff ffffff ffffff ffffff ffffff ffffff 0000ff

0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff

0000ff ffffff ffffff 0000ff 0000ff ffffff ffffff 0000ff

ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff

ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

Because we’ve presented these bits from left to right, top to bottom, in 8 columns, you can

actually see the red smiley if you take a step back.

To be clear, recall that a hexadecimal digit represents 4 bits. Accordingly, ffffff in

hexadecimal actually signifies 111111111111111111111111 in binary.

Okay, stop! Don’t proceed further until you’re sure you understand why 0000ff

represents a red pixel in a 24-bit BMP file.

Let’s look at the underlying bytes that compose smiley.bmp using xxd , a command-

line "hex editor." Execute:

xxd -c 24 -g 3 -s 54 smiley.bmp

Problem 4-5: Grow

7

You should see the below; we’ve highlighted in red all instances of 0000ff .

0000036: ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

000004e: ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff

0000066: 0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff

000007e: 0000ff ffffff ffffff ffffff ffffff ffffff ffffff 0000ff

0000096: 0000ff ffffff 0000ff ffffff ffffff 0000ff ffffff 0000ff

00000ae: 0000ff ffffff ffffff 0000ff 0000ff ffffff ffffff 0000ff

00000c6: ffffff 0000ff ffffff ffffff ffffff ffffff 0000ff ffffff

00000de: ffffff ffffff 0000ff 0000ff 0000ff 0000ff ffffff ffffff

In the leftmost column above are addresses within the file or, equivalently, offsets from

the file’s first byte, all of them given in hex. Note that 00000036 in hexadecimal is 54

in decimal. You’re thus looking at byte 54 onward of smiley.bmp . Recall that a 24-

bit BMP’s first 14 + 40 = 54 bytes are filled with metadata. If you really want to see that

metadata in addition to the bitmap, execute the command below.

xxd -c 24 -g 3 smiley.bmp

If smiley.bmp actually contained ASCII characters, you’d see them in xxd 's rightmost

column instead of all of those dots. (Interesting way to maybe hide some information in

a file!)

So, smiley.bmp is 8 pixels wide by 8 pixels tall, and it’s a 24-bit BMP (each of whose

pixels is represented with 24 ÷ 8 = 3 bytes). Each row (aka "scanline") thus takes up (8

pixels) × (3 bytes per pixel) = 24 bytes, which happens to be a multiple of 4. It turns out

that BMPs are stored a bit differently if the number of bytes in a scanline is not, in fact,

a multiple of 4. In small.bmp , for instance, is another 24-bit BMP, a green box that’s

3 pixels wide by 3 pixels wide. If you view it with Image Viewer (as by double-clicking it),

you’ll see that it resembles the below, albeit much smaller. (Indeed, you might need to

zoom in again to see it.)

Problem 4-5: Grow

8

Each scanline in small.bmp thus takes up (3 pixels) × (3 bytes per pixel) = 9 bytes,

which is not a multiple of 4. And so the scanline is "padded" with as many zeroes as it

takes to extend the scanline’s length to a multiple of 4. In other words, between 0 and 3

bytes of padding are needed for each scanline in a 24-bit BMP. (Understand why?) In the

case of small.bmp, 3 bytes' worth of zeroes are needed, since (3 pixels) × (3 bytes per

pixel) + (3 bytes of padding) = 12 bytes, which is indeed a multiple of 4.

To "see" this padding, go ahead and run the below.

xxd -c 12 -g 3 -s 54 small.bmp

Note that we’re using a different value for -c than we did for smiley.bmp so that xxd

outputs only 4 columns this time (3 for the green box and 1 for the padding). You should

see output like the below; we’ve highlighted in green all instances of 00ff00 .

 0000036: 00ff00 00ff00 00ff00 000000

 0000042: 00ff00 ffffff 00ff00 000000

 000004e: 00ff00 00ff00 00ff00 000000

For contrast, let’s use xxd on large.bmp , which looks identical to small.bmp but, at

12 pixels by 12 pixels, is four times as large. Go ahead and execute the below; you may

need to widen your window to avoid wrapping.

xxd -c 36 -g 3 -s 54 large.bmp

You should see output like the below; we’ve again highlighted in green all instances of

00ff00

Problem 4-5: Grow

9

0000036: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

000005a: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

000007e: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

00000a2: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

00000c6: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff

 ffffff 00ff00 00ff00 00ff00 00ff00

00000ea: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff

 ffffff 00ff00 00ff00 00ff00 00ff00

000010e: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff

 ffffff 00ff00 00ff00 00ff00 00ff00

0000132: 00ff00 00ff00 00ff00 00ff00 ffffff ffffff ffffff

 ffffff 00ff00 00ff00 00ff00 00ff00

0000156: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

000017a: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

000019e: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

00001c2: 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00 00ff00

Worthy of note is that this BMP lacks padding! After all, (12 pixels) × (3 bytes per pixel)

= 36 bytes is indeed a multiple of 4.

(Re)size Matters

Alright, next challenge! Implement now in grow.c a program called grow that resizes

24-bit uncompressed BMPs by a factor of n . Your program should accept exactly three

command-line arguments, per the below usage, whereby the first (n) must be a positive

integer less than or equal to 100, the second the name of the file to be resized, and the

third the name of the resized version to be written.

Usage: ./grow n infile outfile

Problem 4-5: Grow

10

With a program like this, we could have created large.bmp out of small.bmp by

resizing the latter by a factor of 4 (i.e., by multiplying both its width and its height by 4),

per the below.

./grow 4 small.bmp large.bmp

You’re welcome to get started by copying copy.c and naming the copy grow.c

(remember how?). But spend some time thinking about what it means to resize a BMP.

(You may assume that n times the size of infile will not exceed 232 - 1.) Decide

which of the fields in BITMAPFILEHEADER and BITMAPINFOHEADER you might need

to modify. Consider whether or not you’ll need to add or subtract padding to scanlines. And

be thankful that we don’t expect you to support fractional n between 0 and 1! (At least, not

until and unless you tackle Problem 4-66) But we do expect you to support a value of 1

for n , the result of which should be an outfile with dimensions identical to infile 's.

If you’d like to check the correctness of your program with check50 , you may execute

the below.

check50 1516.unit4.grow bmp.h grow.c

If you’d like to play with the staff’s own implementation of grow , you may execute the

below.

~cs50/unit4/grow

If you’d like to peek at, e.g., large.bmp 's headers (in a more user-friendly way than

xxd allows), you may execute the below.

~cs50/unit4/peek large.bmp

Better yet, if you’d like to compare your outfile’s headers against the staff’s, you might want

to execute commands like the below while inside your ~/workspace/unit4/grow

directory. (Think about what each is doing.)

6 http://cdn.cs50.net/ap/1516/problems/4/6/4-6.html

http://cdn.cs50.net/ap/1516/problems/4/6/4-6.html
http://cdn.cs50.net/ap/1516/problems/4/6/4-6.html

Problem 4-5: Grow

11

./grow 4 small.bmp student.bmp

~cs50/unit4/grow 4 small.bmp staff.bmp

~cs50/unit4/peek student.bmp staff.bmp

If you happen to use malloc , be sure to use free so as not to leak memory. Try using

valgrind to check for any leaks!

Here’s Zamyla again!

https://www.youtube.com/watch?v=g8LEbJapnj8

This was Problem 4-5.

https://www.youtube.com/watch?v=g8LEbJapnj8

	Problem 4-5: Grow
	Table of Contents
	Objectives
	Recommended Reading*
	Reasonable
	Not Reasonable

	Assessment
	Getting Started
	Refresher Course
	(Re)size Matters

