
Git Help
An introduction to Git and GitHub



What is Git?



Why use Git?



Keeping track of code changes
● git init
● git add
● git commit
● git log
● git status



git init
● Create a new git repository



git add
● Tell git that a newly created/changed file should be 

included in the next “commit” (snapshot)
● Sometimes called “staging” a change



git commit
● Save a snapshot of the current version of the code
● Include a human-readable message



git commit
● Save a snapshot of the current version of the code
● Include a human-readable message



git log
● View the commit history



git log



git status
● View the current state of the repository
● Show modified, staged, and untracked files



git status
● View the current state of the repository
● Show modified, staged, and untracked files



Now, you try!
1. Open up a terminal in your Project 1 folder
2. Initialize a git repository
3. Add the files you want to commit
4. Create your first commit (don’t forget to specify a 

message with -m)
5. View the log

If curious, run git status between each of the above steps.



Keeping multiple versions of your code
● git branch
● git checkout
● git merge



Git branches

https://github.com/cs50/style50/network



git branch
● List, create, and delete branches



git branch
● List, create, and delete branches



git checkout
● Switch to another branch



git merge
● Join two branches together, merging their commit 

histories



Reverting changes
● git reset
● git checkout (continued)



git reset
● Returns code to a previous state
● Careful, cannot be undone!



git checkout (continued)
● View the state of the repository at a particular commit



git checkout (continued)
To review:

$ git checkout <BRANCH_NAME>

switches to a different branch

$ git checkout <COMMIT_HASH>

allows you a (read-only) view of an earlier commit



Now, you try!
1. Create a new branch in your Project 1 repository
2. Make a small change (add a comment)
3. Merge this change back into master
4. Use git reset to revert this change



Collaborating with others
● git remote
● git push
● git pull



But first...



GitHub





Create a new repository



Create a new repository



Create a new repository



git remote
● Manage remote repositories



git push
● Update remote repository with any commits made locally



git pull
● Update local repository with any changes made remotely



Now, you try!
● Create your Project 1 repository
● Add https://github.com/<YOUR_USERNAME>/project1.git 

as a remote repository
● Push your website to the remote repository

Congrats! You’ve created your first open-source project.





Oh no, merge conflicts!



Contributing to other repositories
● Filing issues on Github
● Forking a repository on Github
● git clone
● Creating pull requests



Issues
● Bug reports/feature requests



Filing issues on GitHub



Filing issues on GitHub



Forking a repository on Github 



Forking a repository on Github 



git clone
● Copy an existing remote repository locally



Pull Requests
● Request that the original repository adopt the changes you 

made



Creating pull requests



Creating pull requests



Why contribute to other projects?





Now, you try!
1. Find a partner
2. Exchange links to your respective repositories
3. Fork and clone their repository into the IDE and try to 

improve it some way.
4. Push your changes to your fork, and create a pull request 

on their repository.



tinyurl.com/feedback14300



lunch!


