
Unit Testing with Python

Test-Driven Development
•Add a test

• Run all tests and see if the new test fails

• Write the code

• Run tests

• Refactor Code

• Repeat

Benefits of Test-Driven Development

•When writing, tests keep from over-coding.

• When refactoring and maintaining, tests ensure new changes
don’t break old functionality.

• When working with a team, a comprehensive test suite ensures
that one person’s changes don’t break someone else’s.

Credit: https://sphereinc.com/achieve-quality-code-and-roi-through-test-automation/

https://sphereinc.com/achieve-quality-code-and-roi-through-test-automation/

Requirements for a Unit Test

•Run automatically, without human input

• Determine automatically whether the test has been
passed or failed, without human interpretation

• Run in isolation, separate from other test cases,
even if multiple cases test the same code

unittest: Python’s
Unit Testing Framework

Errors and Exceptions

•An ‘exception’ is an error that occurs when the code is run.

• Exceptions are not always fatal. They can be ‘handled’ by the
program without exiting, or they can be ‘raised’ voluntarily.

• While Python has a number of built-in exceptions that it will
raise when it encounters a certain error, custom exceptions
can also be defined.

Common Built-In Python Exceptions

•IndexError

• KeyError

• NameError

• SyntaxError

• TypeError

• ValueError

Common unittest Assert Methods
•assertEqual(a, b)

• assertNotEqual(a,b)

• assertTrue(x)

• assertFalse(x)

• assertIs(a, b)

• assertIsNot(a, b)

• assertIsNone(x)

• assertIsNotNone(x)

• assertIn(a,b)

• assetNotIn(a,b)

• assertRaises(e, func,
*args)

Caesar Cipher

Credit: https://brilliant.org/wiki/caesar-cipher/

https://brilliant.org/wiki/caesar-cipher/

ASCII

Credit: http://www.asciichart.com

• American Standard Code for Information Exchange

• ‘Character encoding’ that maps English characters to numbers

http://www.asciichart.com

Modular Arithmetic

•The modulo operation (%) returns the remainder
(modulus) after division of one number by another.

• 5 % 2 == 1, because 5 / 2 == 2 with a remainder of 1.

Modular Arithmetic in Python

•Python’s modulo operation obeys the following two rules:

• (a // b) * b + (a % b) == a

• // indicates floor division, which always rounds down.

• a % b has the same sign as b

Modular Arithmetic in Python

•Calculating -5 % 26:

• (-5 // 26) * 26 + (-5 % 26) == -5

• -1 * 26 + (-5 % 26) == -5

• -26 + (-5 % 26) == -5

• -5 % 26 == 21

