
GD50
Lecture 4: Super Mario Bros.

Colton Ogden
cogden@cs50.harvard.edu

David J. Malan
malan@harvard.edu





● Tile Maps
● 2D Animation
● Procedural Level Generation
● Platformer Physics
● Basic AI
● Powerups

Topics



But first, a demo! 



Our Goal



Tilemaps

● Level is comprised of many small tiles that give the 

appearance of some larger whole.

● Tiles often have an ID of some kind to differentiate their 

appearance or behavior.



tiles0 
“Static Tiles”



tiles1 
“Scrolling Tiles”



tiles1, Important Functions

● love.graphics.translate(x, y)
○ Shifts the coordinate system by x, y; useful for simulating 

camera behavior.



character0 
“The Stationary Hero”



character1 
“The Moving Hero”



character2 
“The Tracked Hero”



character3 
“The Animated Hero”



Animations

● Animations can be achieved by simply displaying a series of 

frames from a sprite sheet one after the other, akin to a flip 

book.



character4 
“The Jumping Hero”



Procedural Level Generation

● Platformer levels can be procedurally generated like anything 

else

● These levels can be easily generated per column rather than 

per row, given things like gaps, though there are multiple 

ways to do it

● Most easily, tiles can foundationally be generated and act as 

the condition upon which GameObjects and Entities are 

generated











level0 
“Flat Levels”



level1 
“Pillared Levels”



level2 
“Chasmed Levels”



Tile Collision

● AABB can be useful for detecting entities, but we can take 

advantage of our static coordinate system and 2D tile array 

and just calculate whether the pixels in the direction we’re 

traveling are solid, saving us computing time.

● See `TileMap:pointToTile(x, y)`!

● Can just directly check tiles on the map once coordinates are 

converted by dividing them by TILE_SIZE

● Notably better than having to iterate over all tiles to check 

AABB in terms of performance, with some inflexibilities (tiles 

can’t move around, for example)



Tile Collision (up)

Tested only when in the `PlayerJumpingState`!



Tile Collision (down)

Tested only when in the `PlayerFallingState`!



Tile Collision (left/right)

Tested in `PlayerJumpingState`, `PlayerFallingState`, and `PlayerMovingState`!



Entities

● Can contain states just like the game, with their own 

StateMachine; states can affect input handling (for the 

player) or decision-making (like the Snail)

● Some engines may adopt an Entity-Component System (or ECS), 

where everything is an Entity and Entities are simply 

containers of Components, and Components ultimately drive 

behavior (Unity revolves around an ECS)

● Collision can just be done entity-to-entity using AABB 

collision detection

● Represent the living things in our distro (Snail and Player), 

but could represent most anything; arbitrary



Game Objects

● Separate from the tiles in our map, for things that maybe 

don’t align perfectly with it (maybe they have different 

widths/heights or their positions are offset by a different 

amount than TILE_SIZE)

● Can be tested for collision by AABB

● Often just containers of traits and functions

● Could be represented via Entities, but aren’t in this distro



Powerups

● Effectively a GameObject that changes some “status” or trait 

of the player

● An invincible star may flip an “invincible” flag on the player 

and begin an “invincibleDuration” timer

● A mushroom to grow the player may trigger a “huge” flag on the 

player that alters their x, y, width, and height and then 

scales their sprite



● Ensure the player always starts above solid land.
● Create random keys and locks (same color) that spawn in 

each level; when the player gets the key, they can unlock 
the lock, which should spawn the goal flag.

● When the player touches the goal flag (which should be 
placed in the level toward the right end), they should 
proceed to the next level, which should get longer than 
the one before it horizontally.

Assignment 4



● Top-Down Perspective
● Triggers
● Events
● Hurtboxes
● Inventory
● GUI
● World State

Next Time...

https://opengameart.org/content/a-cute-dungeon



See you next time! 


