
VERSION
CONTROL
WITH GIT

Wanqian Yang
Slides by Maria Zlatkova
CS50 for MBAs

Why Git? • Collaboration

• Distributed version control model

• Local repository

• Remote repository

• Collaborators

Most
common use

cases

• adding/modifying a new file

• creating and merging a branch with and without merge

conflicts

• Viewing the history/changelog

• Performing a rollback to a certain commit

• Sharing/synching your code to a remote/central

repository

Terminology
• repository, or “repo” for short, a digital directory or storage space where you can access your project, its files, and all the

versions of its files that Git saves.

• master - the repository’s main branch. Depending on the work flow it is the one people work on or the one where the
integration happens

• remote - these are “remote” locations of your repository, normally on some central server.

• clone - copies an existing git repository, normally from some remote location to your local environment.

• commit - submitting modified files to the repository (the local one)

• fetch or pull - like updating or getting latest version. The difference between fetch and pull is that pull combines both, fetching
the latest code from a remote repo as well as performs the merging.

• push - is used to submit the code to a remote repository

• head - is a reference to the node to which our working space of the repository currently points.

• branch - a particular label on a given node, a snapshot/copy in time of a particular repository, further modified with its own
changes

• SHA - every commit or node in the Git tree is identified by a unique SHA key. You can use them in various commands in order to
manipulate a specific node.

Basic Git
Workflow

• You modify files in your working directory.

• You stage the files, adding snapshots of them to your

staging area.

• You do a commit, which takes the files as they are in

the staging area and stores that snapshot permanently

to your Git directory.

Workflows

Centralized

Centralized

Example git config --global user.name ”Maria Zlatkova"

git config --global user.email ”zlatkova@college.harvard.edu"

Example • Maria and David work on a project together

• One of them initializes the central repository

ssh user@host git init --bare /path/to/repo.git

Everybody
clones the

central
repository

git clone ssh://user@host/path/to/repo.git

David
works on

his feature

git status # View the state of the repo

git add <some-file> # Stage a file

git commit # Commit a file</some-file>

Maria
works on
her own
feature

git status # View the state of the repo

git add <some-file> # Stage a file

git commit # Commit a file</some-file>

David
publishes

his feature

git push origin master

Maria tries to publish
her feature

git push origin master

error: failed to push some refs to '/path/to/repo.git'

hint: Updates were rejected because the tip of your current branch is

behind

hint: its remote counterpart. Merge the remote changes (e.g. 'git pull')

hint: before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Maria
rebases on

top of
David’s

commits

git pull --rebase origin master

Maria
resolves a

merge
conflict

CONFLICT (content): Merge conflict in <some-file>

CONFLICT (content): Merge conflict in <some-file>

Unmerged paths:
(use "git reset HEAD <some-file>..." to unstage)
(use "git add/rm <some-file>..." as appropriate to mark resolution)

both modified: <some-file>

git add <some-file>
git rebase --continue

Maria
successfully

publishes
her feature

git push origin master

Questions?

