CS50 for MBAs

SQL

Pedro Farias

23-Feb-2018
Built on slides by Will Claybaugh

Overview of the Discussion:

1. Why Databases Matter
2. Relations vs Non-relation
3. Basic SQL Commands

What's wrong with Old Faithful?

Image source: Wikimedia

1,048,576 rows, 15 digit precision

What is a Database?

- A file on a hard drive
- Databases are not the physical computers
- Key questions:
- How are they structured?
- What happens when the file becomes too big?

CAP Theorem (You Can’t Have It All)

CAP Theorem (You Can’t Have It All)

- Pick two:
- Consistency: Users always get the most recent data
- Availability: Always get a response (even if outdated)
- Partition Tolerance: Keeps working if the network goes to heck

CAP Theorem (You Can't Have It All)

- Pick two:
- Consistency: Users always get the most recent data
- Availability: Always get a response (even if outdated)
- Partition Tolerance: Keeps working if the network goes to heck
- But the network will eventually go to heck...
- Consistency vs. Availability will help determine whether you want a SQL or No SQL database

SQL vs. No SQL

Trade-offs abound!

SQL

- Consistency- You'll always see up-to-date data
- ACID- The database will properly handle [$+10,-10$], even if those commands are interrupted
- Requires cross-referencing many tables to understand an entry
- Hard to scale to multiple machines

No SQL

- Availability- You'll get something reasonable
- ACID is negotiable- Maybe it's fine that edits to a Facebook post get lost
- Duplicates data, but once you find an entry you have it all
- Designed to scale to multiple machines [easy sharding]

SQL

- Always uses the row/column model
- All entries have same properties, settled at database creation
- Built for never losing data, and always being right
- Think: banking, shipping records

No SQL

- Lots of different flavors, each with pros and cons
- New features can be added to single records, on the fly
- Can be very reliable, or can be optimized for size/speed
- Think: Facebook posts, YouTube videos

Summary: SQL vs. No SQL

- Row/Column vs. Flexible
- Maturity vs. Scalability
- Banking is different from Twitter

European Grocery (1996/7) Demo: https://www.w3schools.com/sq//trysql.asp?filename= trysql_create_table

SQL Statement:

CustomerID	CustomerName	ContactName	Address	City	PostalCode	Country
1	Alfreds Futterkiste	Maria Anders	Obere Str. 57	Berlin	12209	Germany
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Avda. de la Constitución 2222	México D.F.	05021	Mexico
3	Antonio Moreno Taquería	Antonio Moreno	Mataderos 2312	México D.F.	05023	Mexico
4	Around the Horn	Thomas Hardy	120 Hanover Sq.	London	WA1 1DP	UK
5	Berglunds snabbköp	Christina Berglund	Berguvsvägen 8	Luleå	S-958 22	Sweden
6	Blauer See Delikatessen	Hanna Moos	Forsterstr. 57	Mannheim	68306	Germany
7	Blondel père et fils	Frédérique Citeaux	24, place Kléber	Strasbourg	67000	France
8	Bólido Comidas preparadas	Martín Sommer	C/ Araquil, 67	Madrid	28023	Spain
9	Bon app'	Laurence Lebihans	12, rue des Bouchers	Marseille	13008	France
10	Bottom-Dollar Marketse	Elizabeth Lincoln	23 Tsawassen Blvd.	Tsawassen	T2F 8M4	Canada
11	B's Beverages	Victoria Ashworth	Fauntleroy Circus	London	EC2 5NT	UK

SQL Statement:

```
SELECT * FROM [Categories]
```

CategoryID	CategoryName	Description
1	Beverages	Soft drinks, coffees, teas, beers, and ales
2	Condiments	Sweet and savory sauces, relishes, spreads, and seasonings
3	Confections	Desserts, candies, and sweet breads
4	Dairy Products	Cheeses
5	Meat/Poultry	Breads, crackers, pasta, and cereal
6	Produce	Prepared meats
7	Seafood	Dried fruit and bean curd
8		Seaweed and fish

Insert a "Utensils" category to the "Categories" table

INSERT INTO Categories (colname, colname) VALUES (v1, v2)
"Orders" Table

So much normalization! What is normalization?

Select only the orders filled by Employee \#4

SELECT * FROM [Orders] WHERE EmployeeID == 4

Select only the orders by Customer \#10 that were filled by Employee \#4

SELECT * FROM [Orders] WHERE EmployeeID == 4 AND CustomerID=10

Select the orders by Customer \#10 or those that were filled by Employee \#4

SELECT * FROM [Orders] WHERE EmployeeID == 4 OR CustomerID == 10

Update the database: Employee \#5 actually only uses Shipper \#3!

UPDATE Orders SET ShipperID == 3

UPDATE Orders SET ShipperID == 3 WHERE EmployeelD == 5

How do I see the change?

SELECT * FROM Orders WHERE EmployeeID == 5

The same customer should have access to different shippers to optimize the system. Let's check this is the case

SELECT ShipperID,CustomerID FROM Orders ORDER BY CustomerID

Summary: SQL Commands

- SELECT: Get specific columns
- INSERT: Add new rows
- UPDATE: Change an existing row
- WHERE: Specify which particular rows
- ORDER BY: How to sort the results
"OrderDetails" Table

Which product is the most popular?

SELECT ProductID,SUM(Quantity) FROM [OrderDetails] GROUP BY ProductID

SELECT ProductID,SUM(Quantity) FROM [OrderDetails] GROUP BY ProductID ORDER BY SUM(Quantity)

SUM, COUNT, MIN, MAX, or AVG DESC

But what even are these products? How can we join databases?

SELECT * FROM OrderDetails JOIN Products ON OrderDetails.ProductID == Products.ProductID

TableName.ColumnName

Summary: SQL Commands

- SELECT: Get specific columns
- INSERT: Add new rows
- DELETE: Removes rows
- UPDATE: Change an existing row
- WHERE: Specify which particular rows
- ORDER BY: How to sort the results
- COUNT: Counts the number of occurrences
- GROUP BY: Combines to one response per unique entry
- JOIN: Ties two normalized tables back together
- SUM/MAX/MIN/AVG

Practice Questions

- Q1: How many customers in Germany?
- A: 11
- Q2: How many units of product 29 did we ship?
- A: 168
- Q3: How many orders in October?
- A: 26. Research the BETWEEN clause
- Q4: Which country has the most customers?
- USA. But you should be able to tell me who is tied for 2nd
- Q5: Which country has the most orders?
- USA with 29. But should be able to tell me and verify the number in Belgium
- Q6: Which customer placed the most orders?
- Ernst Handel with 10

Practice Answers

- Q1: How many customers in Germany?
- SELECT Count(*) FROM Customers WHERE Country='Germany'
- Q2: How many units of product 29 did we ship?
- SELECT Sum(Quantity) FROM [OrderDetails] where ProductID=29
- Q3: How many orders in October?
- SELECT Count(*) FROM [Orders] WHERE OrderDate BETWEEN '1996-10-01' AND '1996-10-31'
- Q4: Which country has the most customers?
- SELECT Count(*),Country FROM [Customers] GROUP BY Country
- Q5: Which country has the most orders?
- SELECT count(*),Customers.Country FROM [Orders] JOIN Customers on Customers.CustomerID=Orders.CustomerID GROUP BY Customers.Country
- Q6: Which customer placed the most orders
- SELECT Count(*),CustomerName FROM Orders JOIN Customers ON Customers.CustomerID=Orders.CustomerID GROUP BY Orders.CustomerID ORDER BY Count(*) DESC

