Artificial Intelligence

handwriting

Watch History

Recommended

Artificial Intelligence

Decision-Making

|--|

Decision Trees

Move paddle left.

while game is ongoing: if ball left of paddle: move paddle left move paddle right else: don't move paddle

else if ball right of paddle:

Yes

Play in square to get 3 in a row.

Play in square to block opponent's 3 in a row.

Optimal Decision-Making

X wants to maximize score. O wants to minimize score.

X		
X	X	
X		

Score? Turn: O

Score: 1

Х

\bigcirc Score: 1 O X X X X 0

Score? Turn: X

Minimax

if player is X: for all possible moves: calculate score for board choose move with highest score

else: for all possible moves: calculate score for board choose move with lowest score

Machine Learning

Reinforcement Learning

Explore vs. Exploit

Explore vs. Exploit Strategy

epsilon = 0.10

if random() < epsilon:</pre> make a random move else: make the move with the highest value
Genetic Algorithms

Genetic Algorithm

make initial generation of candidates randomly repeat until successful: for each candidate: calculate candidate's fitness remove least fit candidates make new generation from remaining candidates

Classification

Nearest-Neighbor Classification

k-Nearest-Neighbor Classification

1 1 1 1 1 1 1 1 1 1 1 1 1 1 ス 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 333333333333333333333333 6666666666666666 モフクフフフィフクファファファファフ 9999999999999999999

0	0	0	0	0	0	0	0	0
0	0	0	0.6	0.8	0	0	0	0
0	0	0	0.8	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0	0.8	0.6	0	0	0
0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0
0	0	0	0.6	0.8	0	0	0	0
0	0	0	0.8	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0.9	0.9	0.9	0	0	0
0	0	0	0	0.8	0.6	0	0	0
0	0	0	0	0	0	0	0	0

[1, 2, 5, 2, 3, 1, 2, 8, 1, 3]

Artificial Intelligence