
CS50 for MBAs
Software Engineering

Build
Test
Deploy
Launch

Build
Test
Deploy
Launch

Problem with shared files

function showProfile(user) {
showProfilePicture(user);
showName(user);

}

function showName(user) {
name = user.getName();

// [TODO]Task1234 Format Name
}

function showProfile(user) {
showProfilePicture(user);
showFriends(user);

}

function showFriends(user) {
friends = user.getFriends();

// [TODO]Task567 show friends!
}

Maria’s job Tommy’s job

Version Control

Version Control

git, mercurial

“Master”

Maria’s Fork

Tommy’s
Fork

Mainline Mainline Mainline

Tommy’s
Fork

Approaches to version control

Feature Branching

Each feature is worked on in isolation until it’s ready to get “merged” back into the main-

line (e.g. after say 2 weeks or even 4 months).

Continuous Integration

Engineers commit their code directly to the single main-line codebase (or update it every

night).

Approaches to codebase architecture
Companies Benefits

Monolith

fbsource at Facebook

Google
Facebook

Faster code modifications and
common tools

Integrated teams and company
culture

Microservices

“Tincup” Uber’s currency rates service

Uber
Netflix
Ebay

Independent Teams

Service Isolation

Scalability

Easier to open source

Code Review

Improving code by having the problem looked at from different perspectives

paths = ['/marketplace', '/watch', '/events', '/groups']
domain = 'facebook.com'

urls = []
for path in paths:
 url = 'https://'
 url += domain
 url += path
 urls.append(url)

paths = ['/marketplace', '/watch', '/events', '/groups']
domain = 'facebook.com'

urls = ['https://' + domain + path for path in paths]

Engineering Quality

Approaches that help increase engineering productivity & satisfaction

Engineering Quality

Modern codebases

Making codebases more healthy,
modern and coherent

i.e. cleaning “dead” code,
adding type coverage for Python

Empowered teams

Creating a culture that
recognizes solving local

engineering issues that slow
teams down

i.e. testing, planning for better
engineering

Engineering Productivity Tools

Building a developer experience
that engineers can be proud of

i.e. tools that address the pains
of development

Why do we need an emphasis on engineering quality?

Size of codebase

Size of engineering team

Why does better engineering matter?

Complexity increases over time

Size of codebase x # of engineers =

When scaling, it gets harder to:

● Prioritize code quality improvements
● Build tools for engineering efficiency
● Invest in code maintainability and testability

Which means:

● Teams aren't able to ship impact as fast
● Engineers will be less proud of their codebase
● Slower building of product

Friendster in 2004, as captured by the Internet Archive.

Friendster

"The problem," [Jonathan Abrams] says, "was that Friendster was having a lot of technology
problems." Friendster had raised an additional $13 million in funding in 2003 and, according

to Abrams, investors weren't focused on patching up the service properly.

"The fact that we didn't launch those products was a problem, but even more fundamentally,
people could barely log into the website for two years," he says. "By the time Facebook

and MySpace was doing those things, Friendster had lost a lot of market share in the U.S. for
stability issues."

Better Engineering

Mobile Case Study

Web Apps
Native Apps
Hybrid Apps

Web Apps
Native Apps
Hybrid Apps

Media Queries

@media screen and (min-width: 920px) {
 ...  
}

@media
(max-width: 919px) and
(min-width: 650px) {
 ...  
}

CSS Frameworks

• Bootstrap

• Foundation

• Material UI

• Semantic UI

• …

User Agents

Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_14_3) AppleWebKit/
537.36 (KHTML, like Gecko)
Chrome/72.0.3626.119 Safari/
537.36

Mozilla/5.0 (Macintosh; Intel
Mac OS X 10_14_3) AppleWebKit/
537.36 (KHTML, like Gecko)
Chrome/72.0.3626.119 Safari/
537.36

Mozilla/5.0 (iPhone; CPU iPhone
OS 12_1 like Mac OS X)
AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/12.0
Mobile/15E148 Safari/604.1

Mozilla/5.0 (iPhone; CPU iPhone
OS 12_1 like Mac OS X)
AppleWebKit/605.1.15 (KHTML,
like Gecko) Version/12.0
Mobile/15E148 Safari/604.1

if 'iphone' in user_agent:
 ...
else:
 ...

Tradeoffs: Web Apps

Tradeoffs: Web Apps

- slower performance

- limited access to device APIs

- no App/Play Store, home screen icon

+ write code once

+ faster iteration

+ lower learning curve

Web Apps
Native Apps
Hybrid Apps

Native Platforms

• Android

• BlackBerry

• iOS

• Windows

• ...

Native Platforms

• Android (Java/Kotlin)

• BlackBerry (Java)

• iOS (Objective-C/Swift)

• Windows (C#)

• ...

iOS

override func viewDidLoad() {
 let button = UIButton(frame:
 CGRect(x: 0, y: 0, width: 100, height: 50)
)
 button.setTitle("Hello", for: .normal)
 view.addSubview(button)
 // ...
}

Android

@Override
protected void onCreate(Bundle state) {
 Button button = new Button(this);
 button.setText("Hello");
 layout.addView(button);
 // ...
}

Usage

theverge.com

http://theverge.com

US

Global

Revenue

techcrunch.com

http://techcrunch.com

Tradeoffs: Native Apps

Tradeoffs: Native Apps

- new language per platform

- slower iteration speed

- APIs constantly changing

+ fast performance

+ no limitations on device APIs

+ higher learning curve

Web Apps
Native Apps
Hybrid Apps

Web View

Hybrid Frameworks

• Cordova

• React Native

• Titanium

• ...

React

class Board extends React.Component {
 renderSquare(i) {
 return <Square value={i} />;
 }
}

class Square extends React.Component {
 ...
}

React Native

<SegmentedControlIOS
 values={['One', 'Two']}
 selectedIndex={this.state.selectedIndex}
 onChange={(event) => {
 this.setState({
 selectedIndex:
event.nativeEvent.selectedSegmentIndex
 });
 }}
/>

Tradeoffs: Hybrid Apps

Tradeoffs: Hybrid Apps

- rely on frameworks + webviews

- lower performance than native

- some limits on API access

+ fast iteration speed

+ write code mostly once

+ reasonable performance

Comparing Approaches

Comparing Approaches

Data

Application
code

Native Apps

Recent data

Application
code

Cached data

Web Apps

Data

Latest
application

code

Hybrid Apps

Recent data

Native/cached
application

code

Latest
application

code

Cached data

Tradeoffs

Build
Test
Deploy
Launch

Testing to ensure things are
working as expected

Why write tests?

To know when something is broken

To get good signal from test failures to help find and fix bugs

To document the intent of the code

To help drive readable, maintainable code design

A/B Testing

A/B Testing Case Study

Generate a hypothesis
Implement an experiment
Review impact

Generate a hypothesis
Implement an experiment
Review impact

Local Search

A B

“There’s too much friction to see
who’s attending”

“People care more about who’s
going than the event details”

“People expect UI elements to
be tappable”

“Floating heads are trendy
right now”

Generate a hypothesis
Implement an experiment
Review impact

Test Control

Experiment size 10 million users in the US 10 million users in the US

Test timeframe 1 week 1 week

A B

50% 50%

define_experiment(
 'tappable_heads',
 buckets=[
 (range(0, 50), True),
 (range(50, 100), False)
]
)

def render():
 if experiment.get('tappable_heads'):
 return render_tappable_heads()
 else:
 return render_heads()

Generate a hypothesis
Implement an experiment
Review impact

Metrics

• Engagement?

• Performance?

• Cost?

• Complexity?

Tradeoffs

Build
Test
Deploy
Launch

Deployment Strategies

SHIP IT!

Manual Scheduled Continuous

Deployment Strategies
[Small, Essential B2B Company]

- Provides cloud-based records management as a service to police and fire departments in the US
- SLA as part of their contracts that the site will have an uptime with no major bugs of 99%
- No more than 3000 users on their service every day, with high expectations of reliability
- 50 engineers

[Large, Consumer Social Company]

- Users get a free service on which they see ads. Users are more tolerant of downtime and have
multiple alternatives when downtime on this service occurs. They’re “sticky” users.

- ~6000 engineers
- The consumer product competes across all geographies and languages in a space with low

barrier to entry.

Deployment at [Important B2B Company]

Every Tuesday:

1. The latest code from the “master” branch of the codebase will get “cut.”
2. For 4 work days, the code will then get released to an internal site using “mocked” data

so that QA testers and engineers can test the site. Bugs are filed and fixed at this point.
3. For 1 work day, the code will then get released to a staging environment using real data,

more tests follow.
4. One week from the original “cut” the newest features get released to 100% of users.

Forward-deployed engineers follow-up with integration and customer support of the new
features.

Deployment at [Consumer Social Company]

Roughly every 3 hours:

1. The “master” branch will get “cut”.
2. The code will run through a series of fully-automated tests (ie no QA engineers), if there

are features or code changes that fail tests, they will either cause the release to stop or
get removed from the release.

3. The code will then go out to
a. C1 (employees) for 30 minutes,
b. C2 (2% of users) for 1.5 hours,
c. and then C3 (98% of users), which takes about 45 minutes.

4. Any bugs that aren’t caught in C1 or C2 and are in production are fixed by the next
deployment, ie there are no concepts of “patches.”

Build
Test
Deploy
Launch

Launching

Craft

Simplicity

Ruthless Prioritization

“If we give ourselves more time, we’ll be tempted to add more scope” - Mike Krieger

After Launch

Launching is the easy part

How do you transition from the intensity of shipping to the sustained focus
needed to succeed in the long run?

Balance Challenges

Adding New Features vs Stability & Performance

Burndown list of feature work

@mentions stickers

Adding New Features vs Stability & Performance

Include quality in roadmap - dedicated performance & quality sprints

Performance projects

• Media fetching based on user behavior

Structured Priorities vs Opportunities For Creativity

Structure that helps plan and distribute work, but still
allows flexibility to pursue innovative new ideas

Opportunity to influence the roadmap continually infuses
the product with fresh ideas

Sticker pinning
○ Rewind
○ Boomerang

Moving Fast vs Craftsmanship

“Do the simple thing first”

How does that translate to V2, V3, and V(n)?

By adding complexity in layers, maintain the velocity to deliver a steady stream of
improvements to the product

Maintaining Core Values vs Expanding the Team

Grow at a sustainable pace to ensure values are maintained and enhanced as
new people join

Collaboration with other teams for face effects in Stories

Q&A

CS50 for MBAs
Software Engineering

