
Lecture 1:
JavaScript, ES6

Jordan Hayashi



Previous Lecture
● Types
● Coercion
● Objects
● Prototypal Inheritance
● Scope
● JS Execution
● Global Object
● Closures...



ES5, ES6, ES2016, ES2017, ES.Next
● ECMAScript vs JavaScript
● What do most environments support?
● Transpilers (Babel, TypeScript, CoffeeScript, etc.)
● Which syntax should I use?



Closures
● Functions that refer to variables declared by parent 

function still have access to those variables
● Possible because of JavaScript’s scoping



Immediately Invoked Function Expression
● A function expression that gets invoked immediately
● Creates closure
● Doesn’t add to or modify global object



First-Class Functions
● Functions are treated the same way as any other value

○ Can be assigned to variables, array values, object values
○ Can be passed as arguments to other functions
○ Can be returned from functions

● Allows for the creation of higher-order functions
○ Either takes one or more functions as arguments or returns a function
○ map(), filter(), reduce()



Synchronous? Async? Single-Threaded?
● JavaScript is a single-threaded, synchronous language 
● A function that takes a long time to run will cause a page 

to become unresponsive
● JavaScript has functions that act asynchronously
● But how can it be both synchronous and asynchronous?



Asynchronous JavaScript
● Execution stack
● Browser APIs
● Function queue
● Event loop



Execution Stack
● Functions invoked by other functions get added to the call 

stack
● When functions complete, they are removed from the 

stack and the frame below continues executing



Asynchronous JavaScript
● Execution stack
● Browser APIs
● Function queue
● Event loop



Asynchronous JavaScript
● Asynchronous functions

○ setTimeout()
○ XMLHttpRequest(), jQuery.ajax(), fetch()
○ Database calls



Callbacks
● Control flow with asynchronous calls
● Execute function once asynchronous call returns value

○ Program doesn’t have to halt and wait for value



Promises
● Alleviate “callback hell”
● Allows you to write code that assumes a value is returned 

within a success function
● Only needs a single error handler



Async/Await
● Introduced in ES2017
● Allows people to write async code as if it were 

synchronous



this
● Refers to an object that’s set at the creation of a new 

execution context (function invocation)
● In the global execution context, refers to global object
● If the function is called as a method of an object, `this` is 

bound to the object the method is called on



Setting `this` manually
● bind(), call(), apply()
● ES6 arrow notation



Browsers and the DOM
● Browsers render HTML to a webpage
● HTML defines a tree-like structure
● Browsers construct this tree in memory before painting the 

page
● Tree is called the Document Object Model
● The DOM can be modified using JavaScript



Assignment
● Create a TODO app
● Will use JS DOM manipulation


