
Lecture 11:
Performance

Jordan Hayashi



Previous Lecture
● Async simpleRedux/
● Redux Middleware
● redux-persist

● Container vs Presentational Components
● ESLint
● Prettier



Performance
● How quickly and efficiently something works
● Performance optimization is the process of making 

something work as efficiently as possible
● Performance optimization is a very wide field

○ Today we’ll discuss optimizing on the JavaScript side of things
○ Mostly high-level, with examples



Trade-Offs
● Performance optimization usually comes at a complexity 

cost
○ In most cases, optimization is not worth the cost in complexity and 

maintainability

● Don’t over-optimize until a bottleneck is found
● How do we measure for bottlenecks?



Measuring Performance
● Be mindful of the environment setting of your application
● React Native Perf Monitor

○ Shows you the refresh rate on both the UI and JS threads
○ Anything below 60 means frames are being dropped

● Chrome Performance Profiler
○ Shows you a flame chart of all of your components
○ Only available in development mode



Common Inefficiencies
● Rerendering too often
● Unnecessarily changing props
● Unnecessary logic in mount/update



Rerendering Too Often
● Components will automatically rerender when they receive 

new props
○ Sometimes, a prop that isn’t needed for the UI will change and cause an 

unnecessary rerender

● If you use redux, only subscribe to the part of state that is 
necessary

● keys in arrays/lists
● shouldComponentUpdate() and React.PureComponent

○ A PureComponent has a predefined shouldComponentUpdate() that 
does a shallow diff of props



Unnecessarily Changing Props
● Unnecessarily changing a value that is passed to a child 

could cause a rerender of the entire subtree
● If you have any object (or array, function, etc.) literals in 

your render() method, a new object will be created at 
each render
○ Use constants, methods, or properties on the class instance



Unnecessary Logic in Mount/Update
● Adding properties to class instance instead of methods on 

the class
○ Properties are created at each mount whereas methods are one time 

ever



Reminder: Trade-Offs
● Performance optimization usually comes at a complexity 

cost
○ In most cases, optimization is not worth the cost in complexity and 

maintainability

● Don’t over-optimize until a bottleneck is found



Animations
● Let’s add a progress bar to our Project 1 timer
● Animations require both the JS and UI threads

○ Sending messages over the bridge 10s of times per second is expensive
○ Blocking either thread impacts the UX

● We could implement the animation in native
○ Requires knowing Obj-C/Swift and Java

● What if we could declare the animation in JS and have it 
execute on the native thread?



Animated
● Allows us to declare a computation in JS and compute it 

on the native thread
○ JS thread no longer needs to compute anything
○ JS thread can be blocked and the animation will still run

● Cannot use native driver for layout props

https://facebook.github.io/react-native/docs/animated.html

https://facebook.github.io/react-native/docs/animated.html

