
Lecture 2:
React, Props, State

Jordan Hayashi



Previous Lecture
● ES6 and beyond
● Closures
● IIFEs
● First-Class Functions
● Execution Stack
● Event Loop
● Callbacks
● Promises and Async/Await
● this



Classes
● Syntax introduced in ES6
● Simplifies the defining of complex objects with their own 

prototypes
● Classes vs instances
● Methods vs static methods vs properties
● new, constructor, extends, super



React
● Allows us to write declarative views that “react” to 

changes in data
● Allows us to abstract complex problems into smaller 

components
● Allows us to write simple code that is still performant



Imperative vs Declarative
● How vs What
● Imperative programming outlines a series of steps to get 

to what you want
● Declarative programming just declares what you want



By User:Martin Möller - File:Classical Guitar two views.jpg, CC BY-SA 
2.0 de, https://commons.wikimedia.org/w/index.php?curid=40474936



React is Declarative
● Imperative vs Declarative
● The browser APIs aren’t fun to work with
● React allows us to write what we want, and the library will 

take care of the DOM manipulation



React is Easily Componentized
● Breaking a complex problem into discrete components
● Can reuse these components

○ Consistency
○ Iteration speed

● React’s declarative nature makes it easy to customize 
components



React is Performant
● We write what we want and React will do the hard work
● Reconciliation - the process by which React syncs 

changes in app state to the DOM
○ Reconstructs the virtual DOM
○ Diffs the virtual DOM against the DOM
○ Only makes the changes needed



Writing React
● JSX

○ XML-like syntax extension of JavaScript
○ Transpiles to JavaScript
○ Lowercase tags are treated as HTML/SVG tags, uppercase are treated 

as custom components

● Components are just functions
○ Returns a node (something React can render, e.g. a <div />)
○ Receives an object of the properties that are passed to the element



Props
● Passed as an object to a component and used to compute 

the returned node
● Changes in these props will cause a recomputation of the 

returned node (“render”)
● Unlike in HTML, these can be any JS value



State
● Adds internally-managed configuration for a component
● `this.state` is a class property on the component instance
● Can only be updated by invoking `this.setState()`

○ Implemented in React.Component
○ setState() calls are batched and run asynchronously
○ Pass an object to be merged, or a function of previous state

● Changes in state also cause re-renders



todoApp.js



But why limit React to 
just web?



React Native
● A framework that relies on React core
● Allows us build mobile apps using only JavaScript

○ “Learn once, write anywhere”

● Supports iOS and Android


