
Lecture 3:
React Native

Jordan Hayashi



Previous Lecture
● Classes
● React
● Imperative vs Declarative Programming
● Props
● State
● todoApp.js
● React Native...



React Native
● A framework that relies on React core
● Allows us build mobile apps using only JavaScript

○ “Learn once, write anywhere”

● Supports iOS and Android



How does React Native work?
● JavaScript is bundled

○ Transpiled and minified

● Separate threads for UI, layout and JavaScript
● Communicate asynchronously through a “bridge”

○ JS thread will request UI elements to be shown
○ JS thread can be blocked and UI will still work



Differences between RN and Web
● Base components
● Style
● No browser APIs

○ CSS animations, Canvas, SVG, etc.
○ Some have been polyfilled (fetch, timers, console, etc.)

● Navigation



React Native Components
● Not globally in scope like React web components

○ Import from 'react-native'

● div → View

● span → Text
○ All text must be wrapped by a <Text /> tag

● button → Button

● ScrollView

https://facebook.github.io/react-native/docs/components-and-apis.html

https://facebook.github.io/react-native/docs/components-and-apis.html


Style
● React Native uses JS objects for styling
● Object keys are based on CSS properties
● Flexbox layout

○ Default to column layout

● Lengths are in unitless numbers
● style prop can take an array of styles
● StyleSheet.create()

○ Functionally the same as creating objects for style
○ Additional optimization: only sends IDs over the bridge



Event Handling
● Unlike web, not every component has every interaction
● Only a few “touchable” components

○ Button

○ TouchableOpacity, TouchableHighlight, TouchableWithoutFeedback
○ TouchableNativeFeedback (Android only)

● Web handlers will receive the event as an argument, but 
React Native handlers often receive different arguments
○ Consult the docs



Components
● Return a node (something that can be rendered)
● Represent a discrete piece of the UI
● “All React components must act like pure functions with 

respect to their props.”
● Two types:

○ Stateless Functional Component (SFC) a.k.a. Pure Functional 
Component

○ React.Component



Stateless Functional Component (SFC)
● Simplest component: use when you don’t need state
● A function that takes props and returns a node

○ Should be “pure” (it should not have any side effects like setting values, 
updating arrays, etc.)

● Any change in props will cause the function to be 
re-invoked



React.Component
● An abstract class that can be extended to behave 

however you want
● These have additional features that SFCs don’t

○ Have instances
○ Maintain their own state
○ Have lifecycle methods (similar to hooks or event handlers) that are 

automatically invoked

● Rendering now becomes a function of props and class 
properties



Component Lifecycle

Mount Update Unmount



Mount
● constructor(props)

○ Initialize state or other class properties (bound methods, etc.)

● render()
○ The meat of a component
○ Return a node

● componentDidMount()
○ Do anything that isn’t needed for UI (async actions, timers, etc.)
○ Setting state here will cause a re-render before updating the UI



Update
● componentWillReceiveProps(nextProps)

○ Update any state fields that rely on props

● shouldComponentUpdate(nextProps, nextState)
○ Compare changed values, return true if the component should rerender

■ If returned false, the update cycle terminates
○ Almost always a premature optimization

● render()

● componentDidUpdate(prevProps, prevState)
○ Do anything that isn’t needed for UI (network requests, etc.)



Unmount
● componentWillUnmount()

○ Clean up
■ Remove event listeners
■ Invalidate network requests
■ Clear timeouts/intervals



Writing React Native



Expo
● “The fastest way to build an app”
● Suite of tools to accelerate the React Native development 

process
○ Snack - runs React Native in the browser
○ XDE - a GUI to serve, share, and publish your Expo projects
○ CLI - a command-line interface to serve, share, and publish projects
○ Client - runs your projects on your phone while developing
○ SDK - bundles and exposes cross-platform libraries and APIs



Import/Export
● Components are great for simplifying code
● We can split components into their own files

○ Helps organize project
○ Export the component from the file

● Import the component before using it in a file
● Default vs named import/export



PropTypes
● React can validate the types of component props at 

runtime
● Development tool that allows developers to ensure they’re 

passing correct props
● Helps document your components’ APIs
● Only runs in development mode



How to Read Docs
● Have a goal in mind
● See what the library/framework/API offers
● Find something that solves your problem
● Configure using the exposed API


