
Lecture 6:
Navigation

Brent Vatne & Eric Vicenti

Previous Lecture
● User input with TextInput
● Simple input validation
● KeyboardAvoidingView

● Debugging
○ Errors and warnings
○ Chrome Developer Tools
○ React Native Inspector with react-devtools

● Installing external libraries with npm

What is navigation?
● Navigation is a broad term that covers topics related to how you move

between screens in your app
● Web navigation is oriented around URLs
● Mobile apps do not use URLs for navigating within the app*
● Navigation APIs completely different on iOS and Android

○ Several React Native libraries provide a platform agnostic alternative
○ We will talk about one of them today, React Navigation

* Linking into a mobile app with a URL is known as deep linking:
https://v2.reactnavigation.org/docs/deep-linking.html

https://v2.reactnavigation.org/docs/deep-linking.html

https://docs.google.com/file/d/1TPrCJOs-n1Jd7A_-iH2aVWM-VR1dcPRv/preview

https://docs.google.com/file/d/18eO1MQDu-nHXYkS-o4-6gLalisKExi-C/preview

https://docs.google.com/file/d/1b-YsSnesLbD0vLZB3_inLWhHE5mmjj9N/preview

React Navigation and alternatives
● Two distinct approaches

1. Implement mainly in JavaScript with React
2. Implement mostly in native, expose an interface to JavaScript for existing

native navigation APIs
● React Navigation takes approach #1

Read more at https://v2.reactnavigation.org/docs/pitch.html and
https://v2.reactnavigation.org/docs/alternatives.html

https://v2.reactnavigation.org/docs/pitch.html
https://v2.reactnavigation.org/docs/alternatives.html

Install React Navigation
● npm install react-navigation@2.0.0-beta.5 --save

● This will install the latest pre-release version at the time of writing. Typically
you would just write npm install react-navigation --save to use the
latest stable version.

● If you refer back to this in the future, keep in mind that this material is all
specific to the 2.x series of releases.

Navigators, routes, and screen components
● A navigator is a component that implements a navigation pattern (eg: tabs)
● Each navigator must have one or more routes.

○ A navigator is a parent of a route.
○ A route is a child of a navigator.

● Each route must have a name and a screen component.
○ The name is usually unique across the app
○ The screen component is a React component that is rendered when the route

is active.
○ The screen component can also be another navigator.

Switch Navigator
● Display one screen at a time
● Inactive screens are unmounted
● The only action a user can take to switch from one route to another

Switch Navigator

Screen one

Go to two

Screen two

Go to one

Creating a navigator

import { createSwitchNavigator } from 'react-navigation';

const AppNavigator = createSwitchNavigator({

 "RouteNameOne": ScreenComponentOne,

 "RouteNameTwo": ScreenComponentTwo,

});

Rendering a navigator

● createSwitchNavigator is a function that returns a React component
● We render the component in our root App component. Usually we only explicitly

render one navigator per app because navigators are composable.

const AppNavigator = createSwitchNavigator({

 "RouteNameOne": ScreenComponentOne,

 "RouteNameTwo": ScreenComponentTwo,

});

export default class App extends React.Component {

 render() {

 return <AppNavigator />

 }

}

Higher order components
● createSwitchNavigator is a Higher Order Component: it is a function that

returns a React component.
● “A higher-order component (HOC) is an advanced technique in React for

reusing component logic.”
● This is similar to higher order functions, which are functions that either take

functions as arguments or return a function as a result.

Read more at https://reactjs.org/docs/higher-order-components.html

https://reactjs.org/docs/higher-order-components.html

Navigating to another route

class ScreenComponentOne extends React.Component {

 render() {

 return (

 <Button

 title="Go to two"

 onPress={() => this.props.navigation.navigate('RouteNameTwo')}

 />

);

 }

}

The navigation prop
● navigate(..)

● goBack(..)

● setParams(..)

● getParam(..)

● dispatch(..)

● isFocused(..)

● addListener(..)

● state

* The navigation prop is passed in to the screen component for each route.

Full reference: https://v2.reactnavigation.org/docs/navigation-prop.html

https://v2.reactnavigation.org/docs/navigation-prop.html

screenProps

● Made available to every screen component in the navigator.
● Perfectly fine for very small applications and prototyping but inefficient for most

meaningful applications - every route in your app will re-render when
screenProps changes. Use a state management library or the React Context API
instead.

export default class App extends React.Component {

 render() {

 return <AppNavigator screenProps={/* object here */} />

 }

}

Stack Navigator
● Display one screen at a time
● The state of inactive screens is maintained and they remain mounted
● Platform-specific layout, animations, and gestures

○ Screens are stacked on top of each other
○ iOS: screens slide in from right to left, can be dismissed with left to right

gesture. Modal screens slide in from bottom to top, can be dismissed with top
to bottom gesture.

○ Android: screens fade in on top of each other, no dismiss gesture. Hardware
back button dismisses the active screen.

● Users can push and pop items from the stack, replace the current item, and
various other

Stack Navigator

Screen one

Go to two

Screen two

Go to three
Screen three

Stack Navigator

Screen one

Go to two

Screen two

Go to three
Screen three

Creating a StackNavigator
import { createStackNavigator } from 'react-navigation';

const AppNavigator = createStackNavigator({

 "RouteNameOne": ScreenComponentOne,

 "RouteNameTwo": ScreenComponentTwo,

});

Navigating to another route

class ScreenComponentOne extends React.Component {

 render() {

 return (

 <Button

 title="Go to two"

 onPress={() => this.props.navigation.navigate('RouteNameTwo')}

 />

);

 }

}

Returning to the previously active route

class ScreenComponentThree extends React.Component {

 render() {

 return (

 <Button

 title="Go back"

 onPress={() => this.props.navigation.goBack()}

 />

);

 }

}

 Configuring navigationOptions
● headerTitle

● headerStyle

● headerTintColor

● headerLeft

● headerRight

Full list: https://v2.reactnavigation.org/docs/stack-navigator.html#navigationoptions...

https://v2.reactnavigation.org/docs/stack-navigator.html#navigationoptions-for-screens-inside-of-the-navigator

Using params to pass state between routes
● navigate with params

this.props.navigation.navigate('RouteName', {

 paramName: 'value-of-param'

});

● setParams to update params for the route

this.props.navigation.setParams({

 paramName: 'new-value-of-param',

});

● getParam to read a param

this.props.navigation.getParam('paramName', 'default-value');

// It's time for us to take a short break

this.props.navigation.navigate('BreakTime');

// Break time is over

this.props.navigation.goBack();

Add button to header with navigationOptions
● headerLeft

● headerRight

Full list: https://v2.reactnavigation.org/docs/stack-navigator.html#navigationoptions...

https://v2.reactnavigation.org/docs/stack-navigator.html#navigationoptions-for-screens-inside-of-the-navigator

// Jump to a screen, identified by route name

navigate('MyRouteName', { paramName: 'param-value' });

// “Push” a new screen, even if it already is in the stack

push('MyRouteName');

Stack specific navigation actions
● push(..)

● pop(..)

● popToTop(..)

● replace(..)

More information: https://v2.reactnavigation.org/docs/navigation-prop.html#...

https://v2.reactnavigation.org/docs/navigation-prop.html#stack-actions

Composing navigators
● Navigators can be composed when one type of navigation visually appears to

be inside another navigator
● A navigator can be the Screen Component of another navigator
● The app should only contain one top-level navigator
● You can navigate() to any route in the app
● goBack() works for the whole app, supports Android back button

Composing navigators
const MyStackNavigator = createStackNavigator({

 "Home": HomeScreen,

 "AddContact": AddContactScreen,

});

const AppNavigator = createSwitchNavigator({

 "Login": LoginScreen,

 "Main": MyStackNavigator,

});

Do not render a navigator inside a screen
class MyScreen extends React.Component {

 render() {

 return <MyStackNavigator />;

 }

}

const AppNavigator = createSwitchNavigator({

 "Main": MyStackNavigator,

});

Instead, set as a screen within the AppNavigator

Tab navigators
● Display one screen at a time
● The state of inactive screens is maintained
● Platform-specific layout, animations, and gestures

○ createMaterialTopTabNavigator

○ createMaterialBottomTabNavigator

○ createBottomTabNavigator

● The navigate() action is used to switch to different tabs
● goBack() can be called to go back to the first tab

○ The tab navigator goBack behavior is configurable

Screen one

 One Two

Tab navigators

Screen two

 One Two

Screen one

Two

Tab navigators

Screen two

 One Two

Creating a tab navigator
const AppNavigator = createBottomTabNavigator({

 "TabOne": ScreenComponentOne,

 "TabTwo": ScreenComponentTwo,

});

export default class App extends React.Component {

 render() {

 return <AppNavigator />

 }

}

Configure tab bar settings
const MainTabs = createBottomTabNavigator(

 {

 ...

 },

 {

 tabBarOptions: {

 activeTintColor: "#a41034"

 }

 }

);

Full reference for tabBarOptions: https://v2.reactnavigation.org/docs/tab-navigator.html#...

https://reactnavigation.org/docs/tab-navigator.html#tabbaroptions-for-tabbarbottom-default-tab-bar-on-ios

Configure tab icons
MainStack.navigationOptions = {

 tabBarIcon: ({ focused, tintColor }) => (

 <Ionicons

 name={`ios-contacts${focused ? "" : "-outline"}`}

 size={25}

 color={tintColor}

 />

)

};

Full reference of options: https://v2.reactnavigation.org/docs/tab-navigator.html#...

https://reactnavigation.org/docs/tab-navigator.html#navigationoptions-used-by-tabnavigator

Use common icon packs

Install it in your shell
npm install --save react-native-vector-icons

// Import a supported icon set in your code

import Ionicons from "react-native-vector-icons/Ionicons";

// Use it as a React component

<Ionicons name="md-checkmark" size={25} color="#000" />

See other icon sets that are included: https://expo.github.io/vector-icons/

https://expo.github.io/vector-icons/

React Navigation Resources
- React Navigation Documentation
- React Navigation API Reference
- NavigationPlayground example source code

https://v2.reactnavigation.org
https://v2.reactnavigation.org/docs/api-reference.html
https://github.com/react-navigation/react-navigation/tree/master/examples/NavigationPlayground

