
Lecture 9:
Redux

Jordan Hayashi



Previous Lectures
● APIs
● Making Network Requests
● Promises, Async/Await
● Data Transformations
● Authentication
● HTTP Methods
● HTTP Response Codes
● Expo Components



Scaling Complexity
● Our apps have been relatively simple, but we’re already 

starting to see bugs related to app complexity
○ Forgetting to pass a prop
○ Directly managing deeply nested state
○ Duplicated information in state
○ Not updating all dependent props
○ Components with large number of props
○ Uncertainty where a piece of data is managed



Scaling Complexity: Facebook
● Facebook found the MVC architecture too complex for 

their scale
● The complexity manifested itself into bugs
● Facebook rearchitected into one-way data flow

https://youtu.be/nYkdrAPrdcw?t=10m22s

https://youtu.be/nYkdrAPrdcw?t=10m22s


Flux
● “An application architecture for React utilizing a 

unidirectional data flow”
○ The views react to changes in some number of “stores”
○ The only thing that can update data in a store is a “dispatcher”
○ The only way to trigger the dispatcher is by invoking “actions”
○ Actions are triggered from the views

● Many implementations
○ https://github.com/facebook/flux
○ https://github.com/reactjs/redux

■ Whether redux is an implementation of Flux is an opinion that can be argued either way

https://github.com/facebook/flux
https://github.com/reactjs/redux


Redux
● A data management library inspired by Flux
● Single source of truth for data
● State can only be updated by an action that triggers a 

recomputation
● Updates are made using pure functions
● Action → Reducer → Update Store

https://redux.js.org

https://redux.js.org


simpleRedux/



Reducer
● Takes the previous state and an update and applies the 

update
● Should be a pure function

○ Result is deterministic and determined exclusively by arguments
○ No side effects

● Should be immutable
○ Return a new object

● What is responsible for invoking the reducer?



Store
● Responsible for maintaining state
● Exposes getter via getState()
● Can only be updated by using dispatch()
● Can add listeners that get invoked when state changes



Actions
● An action is a piece of data that contains the information 

required to make a state update
○ Usually objects with a type key
○ https://github.com/redux-utilities/flux-standard-action

● Functions that create actions are called action creators
● Actions must be dispatched in order to affect the state

https://github.com/redux-utilities/flux-standard-action


simpleRedux → redux
● Our redux implementation has a very similar API

○ Missing a way to notify that state has updated

● How do we get the info from the store to our components?
○ store.getState()

● How do we update the store?
○ store.dispatch()

● How do we get the application to update when the store 
changes?



Review: HOCs
● Higher-Order Components take components as 

arguments or return components
● We could create a HOC that does the following:

○ Check for state updates and pass new props when that happens
○ Automatically bind our action creators with store.dispatch()

● We’d also need to subscribe to store updates
● https://github.com/reactjs/react-redux

https://github.com/reactjs/react-redux

