
1

Imperative, OO and
Functional Languages

 A “C” program is …
 a web of assignment statements, interconnected by

control constructs which describe the time sequence
in which they are to be executed.

 In Java programming,
 “objects” are sent “messages”.

 In “pure” LISP there is only …
 the evaluation of an expression by function application
 instead of “executing a program,” LISP evaluates a

symbolic expression (s-expr) Dr. Henry H. Leitner

2

Why Learn LISP ???

 "Lisp is worth learning for the profound
enlightenment experience you will have when
you finally get it; that experience will make you
a better programmer for the rest of your days,
even if you never actually use Lisp itself a lot.”
 - Eric Raymond, "How to Become a Hacker"

 For examples of some companies that use LISP,
see http://www.paulgraham.com/apps.html

3

Where Does LISP Come From?

4

Introduction to LISP
 LISP syntax: symbolic expressions

 atoms
 lists of atoms
 lists of s-exprs

 Grammar for symbolic expressions:
 <s-expr> ::= <atom> | <list>
 <list> ::= (<s-expr> *)

 (name-or-description-of-a-function
 arg1 arg2 … argn)

5

Evaluation of S-EXPRs
 Parentheses must be taken seriously!
 Quoting inhibits evaluation (EVAL does the

opposite!)
 NIL is both a list and an atom
 Defining your own functions using DEFUN

 area of a circle

 Other useful functions: IF, +, *, =
 Defining a recursive function: factorial

6

Internal Representation
 LISP lists are stored as linked-lists of records

with CAR and CDR fields

 Diagramming list structure:

car cdr

first rest

fum foo bar

‘(foo bar)(cons ‘fum)

7

Other LISP Functions
 Assignment (side-effects) using SETF, SET
 Lisp Manipulation Functions

 CAR, CDR, CONS, LIST, APPEND

 Predicates
 EQ, EQL, EQUAL, ATOM, LISTP, CONSP, NULL,

ZEROP, PLUSP, MINUSP, EVENP, ODDP,
NUMBERP, SYMBOLP, BOUNDP, >, <, <=, >=, =, /=

 Define a function to recursively compute the
length of a list

8

Predicates
 Summary of commonly confused

primitive predicates:

‘A ‘(A) nil
atom t nil t
lisp nil t t
consp nil t nil
null nil nil t
symbolp t nil t

9

Defining 2 More Functions

 Swap the first and second elements of a list.
 e.g., (swap '(A B C D)) (B A C D)
 (defun swap (lst)
 (cons '(cadr lst)
 (cons (car l) (cddr l))))

 Note: this builds a new list with some structure
shared with L

 Compute the “next even integer” following n
 (defun next-even (n)
 (if (evenp n) n (1+ n)))

10

The Most General Conditional

(cond (test1 s-expr11 s-expr12 … s-expr1n1)

 (test2 s-expr21 s-expr22 … s-expr2n2)

 …
 …

 (testk s-exprk1 s-exprk2 … s-exprknk))

11

Recursion on List Structures
 CAR and CDR take lists apart
 the analog of “subtract 1” (when doing induction

on a number) is taking the CDR of a list
 Our version of the built-in MEMBER function:

 (defun memb (element lis)
 (cond ((null lis) nil)
 ((eq (car lis) element) lis)
 (t (memb element (cdr lis)))))

 Recursion in “two directions” — function OCCURS
 (defun occurs (element lis)

 (cond …

Example of Nested List

12

A
B

X

17

13

Nameless Functions via LAMBDA
 LISP programs are conceived and written with a

mathematical rigor, based upon the formalisms of
“recursive function theory” and the “lambda
calculus.”
 Consider y + (x * y) for the values 3 and 4
 Clarify using the “Lambda notation” of Alonzo Church.
 In LISP, we use a similar notation

 (MAPCAR F L)
 F is a function of one parameter
 L is a list (x1 x2 … xn)

 Produces a list (y1 y2 … yn) where yi = (F xi)

14

Procedural Abstraction
 SUM-INTEGERS computes Σ
 SUM-SQUARES computes Σ
 Now make the function-of-n itself a third

parameter:
 SUM-TERMS computes Σ

 Consider now the infinite series

and define PI-TERM(n) to compute the above

 π
8 = 1

1 * 3 + 1
5 * 7 + 1

9 * 11 + …

n = first

last

last

n = first

n = first

last

n

n2

term-fn(n)

Integration by Summation

 Σ f(a + n.dx + dx/2) . dx

 dx . Σ f(a + n.dx + dx/2)

f(x)

a b

0 1 2 3 4 5

dx
(b-a)/dx -1

n = 0

(b-a)/dx -1

n = 0

16

Symbolic Pattern Matching
 Another kind of search problem: in a linear list

of words (symbols, whatever) to discover
specified patterns.
 Although LISP itself has no built-in pattern-

matching, it’s a good implementation language for
such a function.

 (match pattern data) will return T or NIL
 The pattern may contain “wildcard” variables such

as ? (stand for one symbol) and * (stands for a
sequence of 0 or more symbols)

17

Pattern Matching, part 2
 “Wildcard” examples

 A ? B matches A A B
 but not A B
 nor A B C

 A * B matches A A B
 and A B
 and A X Y Z B

 * X * Y matches any sequence containing
 both X and Y in that order

Additional “Wildcards”

18

 ?variable matches a single atom, and
 assigns that atom to variable

 *variable matches a sequence of ≥ 0
 atoms, and assigns a list of that
 sequence to variable

 Example from Doctor program:
 (cond ((match '(I am worried *blah-blah) userInput)

 (princ (append '(How long have you been worried)
 blah-blah)))

