jmmdtlae, O0 and
G unclional .[’W@q%

= A"C" program is ...

> a web of assignment statements, interconnected by
control constructs which describe the time sequence
in which they are to be executed.

" Tn Java programming,
> "objects" are sent "messages”.
" Tn "pure” LISP there is only ...

> the evaluation of an expression by function application

> instead of “"executing a program,” LISP evaluates a
symbolic expression (s-expr)

Dr. Henry H. Leitner

Whiy Learn LISP 777

= “Lisp is worth learning for the profound
enlightenment experience you will have when
you finally get it; that experience will make you
a better programmer for the rest of your days,
even if you never actually use Lisp itself a lot."
- Eric Raymond, "How to Become a Hacker"

" For examples of some companies that use LISP,
see http://www.paulgraham.com/apps.html

Where Doed LIS Come From?

Recursive Functions of Symbolic Expressions
and Their Computation by Machine. Part 1

John McCarthy. Massachusetts Institute of Technology. Cambridge, Mass. *

April 1960

1 Introduction

A programming system called LISP (for LISt Processor) has been developed
for the IBM 704 computer by the Artificial Intelligence group at M.LT. The
system was designed to facilitate experiments with a proposed system called
the Advice Taker. whereby a machine could be instructed to handle declarative
as well as imperative sentences and could exhibit “common sense™ in carrying
out its instructions. The original proposal [1] for the Advice Taker was made
in November 1958. The main requirement was a programming system for
manipulating expressions representing formalized declarative and imperative

contonceoc an 1]",!1 1]]{‘ \II\';{'{‘ -r'Al"l‘l‘ cvetom l‘{\llltl III'AL'I‘ tl!‘(]ll{'1 ;{lll<

Inireduction Lo _fjgﬂ

® | TSP syntax: symbolic expressions

> atoms
> lists of atoms
> lists of s-exprs

® Grammar for symbolic expressions:

> <s-expr> = <atom> | <list>

> <list> ii= (<s-expr> >)

B (name-or-description-of-a-function
argi argz .. argn) ’

Cualualion a% S-EXPR4

® Parentheses must be taken seriously!

® Quoting inhibits evaluation (EVAL does the
oppositel)

® NIL is both a list and an atom
= Defining your own functions using DEFUN

> area of a circle

® Other useful functions: IF,+,*, =

® Defining a recursive function: factorial

Indernal Repredentation

m | TSP lists are stored as linked-lists of records
with CAR and CDR fields car cdr

® Diagramming list structure:
* (cons ‘fum ‘' (foo bar))

prppe

Other LISP Funclions

= Assignment (side-effects) using SETF, SET

® Lisp Manipulation Functions
> CAR, CDR, CONS, LIST, APPEND

® Predicates

> EQ, EQL, EQUAL, ATOM, LISTP, CONSP, NULL,
ZEROP, PLUSP, MINUSP, EVENP, ODDRP,
NUMBERP, SYMBOLP, BOUNDP, >, <, <=, 5=, =, /=

> Define a function fo recursively compute the
length of a list

Predicaled

= Summary of commonly confused
primitive predicates:

fba/émlng, 2 More Yunctions

® Swap the first and second elements of a list.

>eg., (swap '(A B CD)) => (B A C D)

> (defun swap (lst)
(cons ' (cadr 1lst)
(cons (car 1) (cddr 1))))

> Note: this builds a new list with some structure
shared with L

® Compute the "next even integer” following n

> (defun next-even (n)
(L1f (evenp n) n (1+ n)))

The Moit General Conditional

(cond (test; s-expr;; s-expry, ... S-expry,,)
(test, S-expry; S-eXpryy ... S-eXpry,,)

(testy S-eXpryy S-eXpPrgy ... S-€XPTg,e))

10

Recuriion an Liil Shuwctured

" CAR and CDR take lists apart

® the analog of "subtract 1" (when doing induction
on a number) is taking the CDR of a list

B Qur version of the built-in MEMBER function:

> (defun memb (element lis)
(cond ((null lis) nil)
((eq (car lis) element) lis)
(t (memb element (cdr lis)))))

B Recursion in "two directions” — function OCCURS

> (defun occurs (element lis)
(cond ..

Nameless Qunctions via LAMBDA

® | ISP programs are conceived and written with a
mathematical rigor, based upon the formalisms of
“recursive function theory” and the “lambda
calculus.”

> Consider y +(x *y) for the values 3 and 4
> Clarify using the "Lambda notation” of Alonzo Church.
> In LISP, we use a similar notation

" (MAPCAR F L)

> F is a function of one parameter

> Lisalist (x; x, .. x,)

> Produces a list (y; Y, .. Y,) wherey. = (F x.)

Proceduwral Abstraction

last

" SUM-INTEGERS computes = &i.°
" SUM-SQUARES computes 2.

n = first
® Now make the function-of-n itself a third

parameter:
> SUM-TERMS computes P2

n = first
B Consider now the infinite series

last

T _ 1 1 1
& "1*3 '5*7 "9*11

and define PI-TERM(n) to compute the above

+ ...

(b-a)/dx -1

S flatnde+de/2) . de

de. S fla+tndet de/2)

Symibolic Pattemn Malching

" Another kind of search problem: in a linear list
of words (symbols, whatever) to discover
specified patterns.

> Although LISP itself has no built-in pattern-

matching, it's a good implementation language for
such a function.

> (match pattern data) will return T or NIL

> The pattern may contain “wildcard” variables such
as ? (stand for one symbol) and * (stands for a
sequence of O or more symbols)

Pattenn Malching, park 2

= "Wildcard" examples

>A?B

matches A A B
butnot AB
nor ABC

matches A A B
and AB
and AX YZB

matches any sequence containing
both X and Y in that order

17

ﬂéﬂt’ !“W!«Z : 4[”

" 2variable matches a single atom, and
assigns that atom to variable

® *variable matches a sequence of > 0
atoms, and assigns a list of that
sequence to variable

= Example from Doctor program:

» (cond ((match '(I am worried *blah-blah) userInput)

(princ (append '(How long have you been worried)
blah-blah))) 18

