A brief intro to

CS61

Systems Programming
and Machine Organization

Prof. Matt Welsh

Harvard University

December 13, 2007

CS61

New course in Spring 2008: Tuesday/Thursday 2:30-4:00
Prerequisites: CS50 (or C programming experience)

Can be used for CS concentration breadth requirement (“middle digit”)
Can be used for CS secondary area requirement

You can, and should, take both CS51 and CS61 at the same time!

© 2007 Matt Welsh - Harvard University 2

What 1s CS61 all about?

* Revealing the mystery of how machines really work!
» Getting “under the hood” of programming at the machine level

» Understanding what affects the performance of your programs:
* Processor architecture
« Caching and memory management
* Processes, threads, and synchronization

 Writing rock solid (and fast) systems code

© 2007 Matt Welsh - Harvard University 3

Why CS61?

* Huge gap between the concepts of programming and the reality

 This gap is more profound when you start programming in higher-
level languages: Java, C++, Scheme, etc.

* Need to understand how machines really work to grasp:
* Operating Systems
« Databases
* Processor Architecture
« Compilers
* Networks

* ... and even just to be a good programmer, even if you don't
become a Computer Scientist.

© 2007 Matt Welsh — Harvard University

**% STOP: Ox0000001E {0x80000003,0x80106fc0, 0x8025ea21, 0x£d682%9e8)
Inhandled Kernel exceptiom c0000047 from faB418bh4 (B02Gea2l, £d6829e8)

D11 Base Date Stamp - Name

80100000 2ZbelS4cd - ntoskml.exe
80258000 2bd49628 - ncrc¥ll.sys
80267000 2bd49683 - scsidisk.sys
faB00000 2Zhd49666 - Floppy.SYS
faB820000 2bd49676 - Null.SYS
faf40000 Zbdaab00 - 18042prt.S5YS
faBe0000 2bd4966f - kbdclass.S5YS
faB80000 Zbd9cObe - Videoprt.S5YS
faBa0000 2bd4adce - Vga.SYS
falc0000 2bd496c3 - MNpfs.SYS
fa940000 2bd496df - MDIS.SYS
fa970000 2bd49712 - TDI.SYS
£a980000 2bd72406 - streams.sys
£a9c0000 2bdShfd? - ushser.sys
fa%0000 2hd49678 - Parallel.sys
faa00000 2bd49739 - muop. sys
faal0O00 2bd6f2a2 - srv.sys
faab0000 2bd6fdB0 - rdr.sys
Address dword dump D11 Base
801afc20 80106fc0 80106fcO 00O0ODOD
801afc24 80149905 80149905 ff8etbhic
801lafc2c 80129c2c 80129c2c ffHeth9d
801afc34 801240f2 80124f02 ffBebdfd
801lafch4 80124116 80124f16 ffBebfol
801lafctd 8015ac?e B015ac7e ffBebdfd
801afc70 80129bda 80125hda 00000000

D11 Base Date Stamp - Name

80400000 2bcl53b0 - hal.dll

8025000 2hd49688 - SCSIPORT.SYS

802a6000 2bd496b9 - Fastfat.sys

fa810000 2bd496db - Hpfs Rec.SYS

faB30000 2bd4965a - Beep.SYS

fa850000 2hd5a020 - SERMOUSE.SYS

fa870000 2hd49671 - MOUCLASS.SYS

fa890000 2hd49638 - WCG1701E.SYS

fagb0000 2bd4196dD - Msfs.S5YS

fa8e0000 2bd496c9 - Ntfs.5YS

£a930000 2bd49707 - wdlan.sys

fa950000 2bd5a7fbh - nbf.sys

fa9b0000 2bd4975%f - vbnb.sys

£a9d0000 2bd4971d - netbios.sys

fa9£0000 2bd4969f - serial .SYS

faad0000 2hd4971f - SMBTRSIP.SYS

faah0000 2bd4971a - afd.sys

faaal000 2bd49735 - bowser.sys

- Name

00000000 80149905 : faB40000 - i8042prt.
80129c2c ff8ebbh94 : 8025c000 - SCSIPORT.
00000000 £f8e6b94 : 80100000 - ntoskrnl.
ff8eof6ld ffBebcS8 : 80100000 - ntoskrnl.
ff8ebcdc 8015ac¥e : 80100000 - ntoskrnl.
f1f8eb6f60d ff8ebch8 : 80100000 - ntoskrnl.
80088000 80106£fc0 : 80100000 - ntoskrnl.

Eernel Debugger Using: COM2 (Port 0x2f8, Band Rate 19200)

Restart and set the recovery options in the system control panel
or the /CRASHDERUG system start option. If this wessage reappears,
comtact your system adwinistrator or technical support group.

exXe
exe
EXe
exe
exXe

How many times have you seen this?

3
S

egmentation fault — core dumped

© 2007 Matt Welsh - Harvard University 6

% gdb myawesomeprogram core

(gdb) where
#0 0x00001fea in main ()

(gdb) disass
Dump of assembler code for function main:

0x00001fch6
0x00001fc7
0x00001fcH9
0x00001fcc
0x00001fd3
0x00001£fds8
0x00001fdb
0x00001fe2
0x00001fe4d
0x00001fe7
0x00001fea
0x00001fed
0x00001ff0
0x00001ff2
0x00001ff9
0x00001ffb
0x00001ffc

<main+0>:
<main+1>:
<main+3>:
<main+6>:

<main+13>:
<main+18>:
<main+21>:
<main+28>:
<main+30>:
<main+33>:
<main+36>:
<main+39>:
<main+42>:
<main+44>:
<main+51>:
<main+53>:
<main+54>:
End of assembler dump.

© 2007 Matt Welsh - Harvard University

push
mov
sub
movl
call
mov
movl
Jmp
mov
add
movb
lea
incl
cmpl
jle
leave
ret

%ebp

%¥esp, sebp

S0x28, %esp

$0x200, (%esp)

0x3005 <dyld stub malloc>
%eax,-0x10(%ebp)
$0x0,-0xc(%ebp)
O0x1ff2 <main+44>

-0xc (%ebp), %eax
-0x10(%ebp), %eax
$0x42, (%eax)

-0xc (%ebp), %eax
(3eax)
S0x270ffff,-0xc(%ebp)
O0x1lfe4 <main+30>

Hacking into my account...

* Say | left a program in my home directory that would run a shell as
“mdw” if you gave it the right password.

Enter the password:
Congratulations! Running shell...

S

mdw

© 2007 Matt Welsh - Harvard University 8

How would you figure it out?

* Brute force guess? No dice ...

s Enter the password:
Sorry, wrong!

Emailing President Faust...

3

© 2007 Matt Welsh - Harvard University 9

How would you figure it out?

* What if you could read the executable file?

% cat mdwshell
ELF@4(E4 (S!444aatuuuuSLbb (((
Qatd/lib/ld-linux.so.2GNU)(E
—“KaAgUa Hy\20B)6A9U 6N@;
__gmon_start 1libc.so.6 IO stdin
usedfflushexeclputnainprintffgets
stdoutmalloc_ libc_start_mainGLIB
C 2.0ii U%ASfie[AX«“iiyyy.. Oteen
“X[EAV5e¥y% 1y06heayyyyooeByyyyo®he

Ayyyysuhé°yyyyshé yyyysh(éyyyyhoé
yyyyesh8éepyyyli~fhadfadPTRhOhQVhGey

© 2007 Matt Welsh - Harvard University

How would you figure it out?

* What if you could read the executable file?

% od -x mdwshell
0000000 457f 464c
0000020 0002 0003
0000040 0f£8c 0000
0000060 0024 0021
0000100 8034 0804
0000120 0004 0000
0000140 8114 0804
0000160 0001 0000

© 2007 Matt Welsh - Harvard University

Disassembly?

% objdump -d mdwshell

080484f0 <check password>:

80484f0:
80484f1l:
80484f3:
80484f6:
80484fb:
80484fe:
8048500:
8048503:
8048506:
80485009:
804850c:
804850e:
8048510:
8048517:
8048519:
804851d:
8048521:
8048524:
8048527

© 2007 Matt Welsh - Harvard University

55
89
83
al
89
eb
8b
0Of
8b
0Of
38
74
c7
eb
83
83
8b
0Of
0Of

eb
ec
14
45
21
45
b6
45
b6
c2
09
45
29
45
45
45
b6
be

14
98
fc

08
10
fc
00

00 00 00 00

01
01

push
mov
sub
mov
mov
Jmp
mov
movzbl
mov
movzbl
cmp

je
movl
Jmp
addl
addl
mov
movzbl
movsbl

%ebp

%esp, sebp
$0x14,%esp
0x8049814, %eax
3eax,-0x4 (%ebp)
8048521

0x8 (%ebp), %eax
(%eax), %edx
-0x4 (%ebp), 3eax
(3eax),%eax
%al,sdl

8048519
$0x0,-0x14 (%ebp)
8048542
$0x1,0x8(%ebp)
$0x1,-0x4 (%ebp)
0x8 (%ebp), 3eax
(%eax),%eax
%al, %eax

Disassembly

Put the ebp register on the stack
%sesp, $ebp Copy stack pointer to ebp register
S0x14,%esp Subtract 20 bytes from stack pointer

0x8049814, %eax Move 0x8049814 to eax register
Move eax register to local variable

3ebp

%eax,-0x4 (%ebp)
8048521 Jump to address 0x804521

0x8(%ebp), %eax Copy 2™ argument to eax register

© 2007 Matt Welsh - Harvard University 13

Disassembly

Put the ebp register on the stack

%eb

%esg,%ebp Copy stack pointer to ebp register
$0x14,%esp Subtract 20 bytes from stack pointer
0x8049814, %eax Move 0x8049814 to eax register
%eax,-0x4 (%ebp) Move eax register to local variable
8048521 Jump to address 0x804521

0x8 (%ebp), %eax Copy 2nd argument to eax register

* Hmmm ... seems kind of complex.
« Until you take CS61 that is...

* What's this? [Eisls 0x8049814, %eax Looks interesting.

© 2007 Matt Welsh — Harvard University 14

Disassembly

$ objdump -s mdwshell

Contents of section .data:
8049808 00000000 00000000 00970408 ac860408

T T

This is 0x8049808 This is 0x8049814

 This is what the “check _password” routine is looking at.
How do we read it?

* Well, the x86 is a little-endian processor...
* Meaning, a four-word byte is stored with the least significant byte first!
* S0, ac 86 04 08 == 0x080486ac
 Hmm, that looks like another memory address....

© 2007 Matt Welsh - Harvard University 15

Disassembly

This is 0x80486a4 This is 0x80486ac Must be the password

i i

80486a4 03000000 01000200
80486b4d 00456e74 65722074 68652070 61737377 .Enter the passw

80486c4 6f72643a 2000436f 6e677261 74756c61 ord: .Congratula
80486d4 74696f6e 7321002f 62696e2f 73680059 tions!./bin/sh.Y

© 2007 Matt Welsh - Harvard University 16

“Hack this Binary” Contest

* 1) Go to the CS61 web page:
http://www.eecs.harvard.edu/~mdw/course/cs61

» 2) Click on “Binary hacking contest” link at the top
* 3) First one to hack the binary wins a prize (TBD)
* 4) Have fun :-)

© 2007 Matt Welsh - Harvard University 17

http://www.eecs.harvard.edu/~mdw/course/cs61

Ken Thompson's Compiler Hack

* Ken Thompson — Co-inventor of UNIX
* Won Turing Award in 1983 (with Dennis Ritchie)

 During his award lecture, made a stunning
admission...

© 2007 Matt Welsh - Harvard University 18

Thompson's Compiler Hack

 Early days of UNIX: Thompson hacked the “login” program
* Would accept a “magic” password to let him login on any UNIX system
* Really helpful for debugging ...

* Problem: The source code for “login.c” was widely distributed

* The whole system was “open source” (before we had that term...)
* S0, anyone could find the backdoor code!

* S0, he hacked the C compiler...
» C compiler would recognize that it was compiling “login.c”
* Insert the backdoor code in at compile time

© 2007 Matt Welsh - Harvard University 19

Thompson's Compiler Hack

* Now the backdoor was in the compiler code.
What if someone read that?

* He hacked the compiler to recognize when it was compiling itself
* The compiler was itself implemented in C.
* (Chicken and egg problem: How did they write the first C compiler?)

* The compiler would insert the backdoor code into itself!

* So when the compiler compiles itself, it would insert the backdoor code to recognize
when it was compiling login.c, to insert the backdoor code to check for the magic
password. Got it?

* He then deleted the original compiler source code.
* The backdoor could only be found in the binary!

© 2007 Matt Welsh - Harvard University 20

Building Robust Internet Servers

* Imagine you are running Amazon, Yahoo, or Google.

* How do you design your software to handle massive load?

 Tens of thousands of clicks a second

» Extremely bursty demand

* Service must be up and running 24/7 with no (discernible) outages

 This is a hard problem!

© 2007 Matt Welsh - Harvard University 21

Overload on the Internet

* Any reasonably popular service on the Internet will experience
overload
» User populations are approximately infinite
* User demand can be highly correlated (“flash crowds™)

* The peak load can be orders of magnitude larger than the average!

* Some examples:
* CNN on Sept 11, 2001: 30,000 hits/sec, down for 2.5 hours
* E*Trade sued in class-action lawsuit for not executing trades on time

 Final Fantasy Xl launch in Japan caused all servers
to go down for 2 days

* The “Slashdot effect” -- daily frustration to nerds everywhere

© 2007 Matt Welsh - Harvard University 22

God's version of the Slashdot eftect

80 —m—m———————————

(| Bl iilisiii s ll A i -

1 S il i i i i i .

S . e ciililili BBl I -

40

Hits per second

30

20

10 |

0
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time
* M7.1 earthquake at 3:00 a.m., October 16, 1999

© 2007 Matt Welsh - Harvard University 23

Why take CS61?

* Learn how machines really work.
« Use gdb and objdump like an expert.

* Debug the hardest (and most interesting) bugs.
« Stuff that only makes sense when you can read assembly.

» Hacking binaries for fun and profit.
* How did the iPhone get jailbreaked? The Code Red virus spread so quickly?

* Measure and improve the performance of your programs.
* Understand memory hierarchies, processor pipelines, and parallelism.

* Write concurrent, multi-threaded programs like a pro.
* The basis for every application and server on the Internet today.

© 2007 Matt Welsh — Harvard University 24

Er, this sounds really hard...

* CS61 is not intended to be a heavy workload course.

* Challenging, but fun.
* Intended for everyone who has taken CS50 — not just CS concentrators

* Five lab assignments — can work in pairs:
* 1) Defusing a binary bomb
 2) Hacking a buffer overrun bug
* 3) Implementing dynamic memory allocation
* 4) Writing your own UNIX shell
 5) Building a concurrent Internet service.

» Two midterms in class. Take-home final exam. That's it.

© 2007 Matt Welsh - Harvard University 25

Or take both!

Topics to be covered

* Intel x86 assembly language programming
* Registers, memory, control flow, procedures, data structures

» Performance measurement and program optimization

* Linking and loading

* Memory hierarchy, caching, and dynamic memory allocation
* UNIX systems programming: files, pipes, signals, processes
e Threads and synchronization

* UNIX sockets programming

* Implementing concurrent servers

© 2007 Matt Welsh - Harvard University 28

Questions?

* Email me! mdw@eecs.harvard.edu

* Or drop by Maxwell Dworkin 233

© 2007 Matt Welsh - Harvard University 29

mailto:mdw@eecs.harvard.edu

