
A brief intro to

CS61
Systems Programming
and Machine Organization

Prof. Matt Welsh
Harvard University

December 13, 2007

© 2007 Matt Welsh – Harvard University 2

CS61

New course in Spring 2008: Tuesday/Thursday 2:30-4:00

Prerequisites: CS50 (or C programming experience)

Can be used for CS concentration breadth requirement (“middle digit”)

Can be used for CS secondary area requirement

You can, and should, take both CS51 and CS61 at the same time!

© 2007 Matt Welsh – Harvard University 3

What is CS61 all about?

● Revealing the mystery of how machines really work!

● Getting “under the hood” of programming at the machine level

● Understanding what affects the performance of your programs:
● Processor architecture
● Caching and memory management
● Processes, threads, and synchronization

● Writing rock solid (and fast) systems code

© 2007 Matt Welsh – Harvard University 4

Why CS61?

● Huge gap between the concepts of programming and the reality

● This gap is more profound when you start programming in higher-
level languages: Java, C++, Scheme, etc.

● Need to understand how machines really work to grasp:
● Operating Systems
● Databases
● Processor Architecture
● Compilers
● Networks

● ... and even just to be a good programmer, even if you don't
become a Computer Scientist.

© 2007 Matt Welsh – Harvard University 5

© 2007 Matt Welsh – Harvard University 6

How many times have you seen this?

% gcc -o myawesomeprogram map.c

% ./myawesomeprogram
segmentation fault – core dumped

%

© 2007 Matt Welsh – Harvard University 7

% gdb myawesomeprogram core

(gdb) where
#0 0x00001fea in main ()

(gdb) disass
Dump of assembler code for function main:
0x00001fc6 <main+0>: push %ebp
0x00001fc7 <main+1>: mov %esp,%ebp
0x00001fc9 <main+3>: sub $0x28,%esp
0x00001fcc <main+6>: movl $0x200,(%esp)
0x00001fd3 <main+13>: call 0x3005 <dyld_stub_malloc>
0x00001fd8 <main+18>: mov %eax,-0x10(%ebp)
0x00001fdb <main+21>: movl $0x0,-0xc(%ebp)
0x00001fe2 <main+28>: jmp 0x1ff2 <main+44>
0x00001fe4 <main+30>: mov -0xc(%ebp),%eax
0x00001fe7 <main+33>: add -0x10(%ebp),%eax
0x00001fea <main+36>: movb $0x42,(%eax)
0x00001fed <main+39>: lea -0xc(%ebp),%eax
0x00001ff0 <main+42>: incl (%eax)
0x00001ff2 <main+44>: cmpl $0x270ffff,-0xc(%ebp)
0x00001ff9 <main+51>: jle 0x1fe4 <main+30>
0x00001ffb <main+53>: leave
0x00001ffc <main+54>: ret
End of assembler dump.

© 2007 Matt Welsh – Harvard University 8

Hacking into my account...

● Say I left a program in my home directory that would run a shell as
“mdw” if you gave it the right password.

% cd /home/mdw
% ./mdwshell
% Enter the password: *********
Congratulations! Running shell...

$ whoami
mdw

© 2007 Matt Welsh – Harvard University 9

How would you figure it out?

● Brute force guess? No dice ...

% cd /home/mdw
% ./mdwshell
% Enter the password: lameguess
Sorry, wrong!
Emailing President Faust...

%

© 2007 Matt Welsh – Harvard University 10

How would you figure it out?

● What if you could read the executable file?

% cat mdwshell
ELF@4 4 ($!444ààüüüüü$LÐÐ(((Œ
Qåtd/lib/ld-linux.so.2GNU)Œ
¬KãÀgUa Hy\²0B)óA9U 6N@¨; � �
__gmon_start__libc.so.6_IO_stdin_
usedfflushexeclputnàinprintffgets
stdoutmalloc__libc_start_mainGLIB
C_2.0ii U åS ìè[ÃX üÿÿÿ Òtèèù‰ ƒ � ‹� �
´X[ÉÃÿ5èÿ%ìÿ%ðhéàÿÿÿÿ%ôéÐÿÿÿÿ%øhé
Àÿÿÿÿ%ühé°ÿÿÿÿ%hé ÿÿÿÿ%h(éÿÿÿÿh0é� �
ÿÿÿÿ%h8épÿÿÿ1í^ á äðPTRhðhQVhGèÿ‰ ƒ �

© 2007 Matt Welsh – Harvard University 11

How would you figure it out?

● What if you could read the executable file?

% od -x mdwshell
0000000 457f 464c 0101 0001 0000 0000 0000 0000
0000020 0002 0003 0001 0000 8440 0804 0034 0000
0000040 0f8c 0000 0000 0000 0034 0020 0007 0028
0000060 0024 0021 0006 0000 0034 0000 8034 0804
0000100 8034 0804 00e0 0000 00e0 0000 0005 0000
0000120 0004 0000 0003 0000 0114 0000 8114 0804
0000140 8114 0804 0013 0000 0013 0000 0004 0000
0000160 0001 0000 0001 0000 0000 0000 8000 0804

© 2007 Matt Welsh – Harvard University 12

Disassembly?

% objdump -d mdwshell
...
080484f0 <check_password>:
 80484f0: 55 push %ebp
 80484f1: 89 e5 mov %esp,%ebp
 80484f3: 83 ec 14 sub $0x14,%esp
 80484f6: a1 14 98 04 08 mov 0x8049814,%eax
 80484fb: 89 45 fc mov %eax,-0x4(%ebp)
 80484fe: eb 21 jmp 8048521
 8048500: 8b 45 08 mov 0x8(%ebp),%eax
 8048503: 0f b6 10 movzbl (%eax),%edx
 8048506: 8b 45 fc mov -0x4(%ebp),%eax
 8048509: 0f b6 00 movzbl (%eax),%eax
 804850c: 38 c2 cmp %al,%dl
 804850e: 74 09 je 8048519
 8048510: c7 45 ec 00 00 00 00 movl $0x0,-0x14(%ebp)
 8048517: eb 29 jmp 8048542
 8048519: 83 45 08 01 addl $0x1,0x8(%ebp)
 804851d: 83 45 fc 01 addl $0x1,-0x4(%ebp)
 8048521: 8b 45 08 mov 0x8(%ebp),%eax
 8048524: 0f b6 00 movzbl (%eax),%eax
 8048527: 0f be c0 movsbl %al,%eax
 ...

© 2007 Matt Welsh – Harvard University 13

Disassembly

push %ebp
mov %esp,%ebp
sub $0x14,%esp
mov 0x8049814,%eax
mov %eax,-0x4(%ebp)
jmp 8048521
mov 0x8(%ebp),%eax

Put the ebp register on the stack
Copy stack pointer to ebp register
Subtract 20 bytes from stack pointer
Move 0x8049814 to eax register
Move eax register to local variable
Jump to address 0x804521
Copy 2nd argument to eax register

© 2007 Matt Welsh – Harvard University 14

Disassembly

push %ebp
mov %esp,%ebp
sub $0x14,%esp
mov 0x8049814,%eax
mov %eax,-0x4(%ebp)
jmp 8048521
mov 0x8(%ebp),%eax

Put the ebp register on the stack
Copy stack pointer to ebp register
Subtract 20 bytes from stack pointer
Move 0x8049814 to eax register
Move eax register to local variable
Jump to address 0x804521
Copy 2nd argument to eax register

● Hmmm ... seems kind of complex.
● Until you take CS61 that is...

● What's this? Looks interesting.mov 0x8049814,%eax

© 2007 Matt Welsh – Harvard University 15

Disassembly

% objdump -s mdwshell
...
Contents of section .data:
 8049808 00000000 00000000 00970408 ac860408

This is 0x8049808 This is 0x8049814

● This is what the “check_password” routine is looking at.
How do we read it?

● Well, the x86 is a little-endian processor...
● Meaning, a four-word byte is stored with the least significant byte first!
● So, ac 86 04 08 == 0x080486ac
● Hmm, that looks like another memory address....

© 2007 Matt Welsh – Harvard University 16

Disassembly

 80486a4 03000000 01000200 74616b65 63733631 takecs61
 80486b4 00456e74 65722074 68652070 61737377 .Enter the passw
 80486c4 6f72643a 2000436f 6e677261 74756c61 ord: .Congratula
 80486d4 74696f6e 7321002f 62696e2f 73680059 tions!./bin/sh.Y

This is 0x80486a4 This is 0x80486ac Must be the password

© 2007 Matt Welsh – Harvard University 17

“Hack this Binary” Contest

● 1) Go to the CS61 web page:
http://www.eecs.harvard.edu/~mdw/course/cs61

● 2) Click on “Binary hacking contest” link at the top

● 3) First one to hack the binary wins a prize (TBD)

● 4) Have fun :-)

http://www.eecs.harvard.edu/~mdw/course/cs61

© 2007 Matt Welsh – Harvard University 18

Ken Thompson's Compiler Hack

● Ken Thompson – Co-inventor of UNIX

● Won Turing Award in 1983 (with Dennis Ritchie)

● During his award lecture, made a stunning
admission...

© 2007 Matt Welsh – Harvard University 19

Thompson's Compiler Hack

● Early days of UNIX: Thompson hacked the “login” program
● Would accept a “magic” password to let him login on any UNIX system
● Really helpful for debugging ...

● Problem: The source code for “login.c” was widely distributed
● The whole system was “open source” (before we had that term...)
● So, anyone could find the backdoor code!

● So, he hacked the C compiler...
● C compiler would recognize that it was compiling “login.c”
● Insert the backdoor code in at compile time

© 2007 Matt Welsh – Harvard University 20

Thompson's Compiler Hack

● Now the backdoor was in the compiler code.
What if someone read that?

● He hacked the compiler to recognize when it was compiling itself
● The compiler was itself implemented in C.
● (Chicken and egg problem: How did they write the first C compiler?)

● The compiler would insert the backdoor code into itself!
● So when the compiler compiles itself, it would insert the backdoor code to recognize

when it was compiling login.c, to insert the backdoor code to check for the magic
password. Got it?

● He then deleted the original compiler source code.
● The backdoor could only be found in the binary!

© 2007 Matt Welsh – Harvard University 21

Building Robust Internet Servers

● Imagine you are running Amazon, Yahoo, or Google.

● How do you design your software to handle massive load?

● Tens of thousands of clicks a second

● Extremely bursty demand

● Service must be up and running 24/7 with no (discernible) outages

● This is a hard problem!

© 2007 Matt Welsh – Harvard University 22

Overload on the Internet

● Any reasonably popular service on the Internet will experience
overload

● User populations are approximately infinite
● User demand can be highly correlated (“flash crowds”)

● The peak load can be orders of magnitude larger than the average!

● Some examples:
● CNN on Sept 11, 2001: 30,000 hits/sec, down for 2.5 hours
● E*Trade sued in class-action lawsuit for not executing trades on time
● Final Fantasy XI launch in Japan caused all servers

 to go down for 2 days

● The “Slashdot effect” -- daily frustration to nerds everywhere

© 2007 Matt Welsh – Harvard University 23

God's version of the Slashdot effect

● M7.1 earthquake at 3:00 a.m., October 16, 1999

© 2007 Matt Welsh – Harvard University 24

Why take CS61?

● Learn how machines really work.
● Use gdb and objdump like an expert.

● Debug the hardest (and most interesting) bugs.
● Stuff that only makes sense when you can read assembly.

● Hacking binaries for fun and profit.
● How did the iPhone get jailbreaked? The Code Red virus spread so quickly?

● Measure and improve the performance of your programs.
● Understand memory hierarchies, processor pipelines, and parallelism.

● Write concurrent, multi-threaded programs like a pro.
● The basis for every application and server on the Internet today.

© 2007 Matt Welsh – Harvard University 25

Er, this sounds really hard...

● CS61 is not intended to be a heavy workload course.
● Challenging, but fun.
● Intended for everyone who has taken CS50 – not just CS concentrators

● Five lab assignments – can work in pairs:
● 1) Defusing a binary bomb
● 2) Hacking a buffer overrun bug
● 3) Implementing dynamic memory allocation
● 4) Writing your own UNIX shell
● 5) Building a concurrent Internet service.

● Two midterms in class. Take-home final exam. That's it.

© 2007 Matt Welsh – Harvard University 26

© 2007 Matt Welsh – Harvard University 27

CS61 CS51

Or take both!

© 2007 Matt Welsh – Harvard University 28

Topics to be covered

● Intel x86 assembly language programming
● Registers, memory, control flow, procedures, data structures

● Performance measurement and program optimization

● Linking and loading

● Memory hierarchy, caching, and dynamic memory allocation

● UNIX systems programming: files, pipes, signals, processes

● Threads and synchronization

● UNIX sockets programming

● Implementing concurrent servers

© 2007 Matt Welsh – Harvard University 29

Questions?

● Email me! mdw@eecs.harvard.edu

● Or drop by Maxwell Dworkin 233

mailto:mdw@eecs.harvard.edu

