
CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

Dealing with a Seg Fault (0:00-8:00)

 Take another look at buggy6.c

 Because we index up to 10 in a 3-slot array, we get a whole bunch of “junk” in addition to the

three desired scores

 If we push the limits of the program and index up to 1000, we get the message Segmentation

Fault (core dumped)

 This just means you screwed up. When something really bad happens, usually involving

memory, the operating system puts a file in the directory that has the contents of the ram.

Presumably you can go look at your core and figure out what happened.

 By listing the files in the current directory, we take a look at core and notice that it’s 300K.

 If the core is of no value to you, you probably should rm it because it’s so big.

Strings as Arrays (8:00-17:00)

 What is an array? A collection of variables of an identical type.

 In terms of memory, an array is a contiguous chunk of RAM that contains an indexed list of

variables.

 Actually you’ve been seeing character arrays for quite some time. A string is really just a

character array.

 Take a look at string1.c:

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int

main(int argc, char * argv[])

{

 char c;

 int i;

 string s;

 /* get line of text */

 s = GetString();

 /* print string, one character per line */

 if (s != NULL)

 {

 for (i = 0; i < strlen(s); i++)

 {

 c = s[i];

 printf("%c\n", c);

 }

 }

}

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

 First, note that we check to see if s is NULL. NULL means 0, and in this case is an error code that

is returned by GetString() if some problem occurred in the function.

 When you get a return value from a function, it is good practice to check and see if you got an

error code and then deal with it appropriately. Otherwise, you could accidentally refer to a

memory location that does not contain anything (or at least nothing valuable to us).

 Now look at the loop in the body of the program. Here, we loop through the string to access

each character.

 We can do this because strings are actually just arrays of characters. So when you type foo in as

an input string, the computer actually makes a character array consisting of |f|o|o|\0

 The last character must always be \0 to indicate the end of the string. Strings are by convention

always “null-terminated”.

 In the same way we can use syntax like A[i] to index into an array, we can say s[i] for some string

s to index into it.

 Example. s = “foo”. s*0+ = f.

 The function strlen() will tell you how many characters in the string. Probably implemented as a

while loop with an incrementing variable.

 When we have a for loop, the condition is executed every single time. When we have a function

in the condition, it gets run every time.

 This is inefficient and actually unnecessary since strlen(s) does not change in the body of the

loop

 We can rewrite this for loop as for (i = 0, n = strlen(s); i < n; i++)

 Of course, if we had a function whose value was changing, then we would want to call the

function every time at the start of the function

Capitalize.c (17:00-24:00)

 Take a look at capitalize.c

#include <cs50.h>

#include <stdio.h>

#include <string.h>

int

main(int argc, char * argv[])

{

 int i, n;

 string s;

 /* get line of text */

 s = GetString();

 /* capitalize text */

 for (i = 0, n = strlen(s); i < n; i++)

 {

 if (s[i] >= 'a' && s[i] <= 'z')

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

 printf("%c", s[i] - ('a' - 'A'));

 else

 printf("%c", s[i]);

 }

 printf("\n");

}

 This time, we have gotten rid of the NULL check. Why? Because strlen() already knows how to

detect if a string is of 0 length.

 What does this program do? It takes a string and reprints it in all caps. This works because of

the math related to characters. (See Monday’s scribe notes.)

 You might be wondering how we knew about the library string.h and the function strlen(). You

can find out about useful library functions and things on documentation websites. A good one is

cppreference.com. Some others are found on the website.

Command-Line Arguments (24:00-30:00)

 Whenever we write our main function we always give it some parameters like this:

int main(int argc, char * argv[])

 Main is actually just a function that takes two arguments

 When we type the program’s name at the prompt, we can follow it by words or numbers that

will get passed into the program by means of these arguments

 Argc is an int representing the number of arguments

 Argv is an array of arrays of characters (an array of strings) that contains those arguments

 Note that the computer will throw away white space and treat anything separated by space as a

separate argument

 Take a look at argv1.c

int

main(int argc, char * argv[])

{

 int i;

 /* print arguments */

 printf("\n");

 for (i = 0; i < argc; i++)

 printf("%s\n", argv[i]);

 printf("\n");

}

 This program iterates over the array of arguments and simply prints each one by referencing

argv[i]

 Notice that argv[0] is a.out – the name of the program

 So the first actual argument will always be argv[1], and will go up to argc many arguments

 Take a look at argv2.c

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

int

main(int argc, char * argv[])

{

 int i, j, n;

 /* print arguments */

 printf("\n");

 for (i = 0; i < argc; i++)

 {

 for (j = 0, n = strlen(argv[i]); j < n; j++)

 printf("%c\n", argv[i][j]);

 printf("\n");

 }

}

 Now we again iterate over each argument from the command-line.

 But now for each argument, we iterate over its characters.

 We reference arrays within arrays using [][] notation

 argv[i][j] refers to the jth character of the ith array (remember, argv is an array of arrays)

CS 50’s Library (30:00-35:00)

 These functions are not written as robustly as they could be

 For instance, GetString() allocates memory for a string, but you never free it.

 We will learn more about allocating and freeing memory later on

Introduction to Cryptography (35:00-53:00)

 When we evaluate the security of cryptographic schemes, we consider the point of view of an

adversary trying to break them, and translate the process of breaking the code into a math

problem

 The more difficult the math problem, the better the encryption scheme

 The Caesar cipher we looked at on Monday is represented by the following equation:

ci = (pi + k) % 26

 As you can see, it is an easily solvable problem because, with the help of a computer, we could

simply try all the possible rotations in a very small amount of time

 As a result, the Caesar cipher is an extremely unsecure encryption method

 Vigenere cipher is similar but uses larger keys. Rather than rotating by a number, it rotates by a

“word”.

 You have a multi-letter key and rotate each letter in your plain text by a different letter in your

key. (And just repeat the key if it’s not long enough)

 If p = HELLO,WORLD and k = FOOBAR., then we get c by doing H+F = M, E+O=S, L+O = Z, etc., to

come up with c = MSZMO,NTFZE

 (Note that we do not bother rotating punctuation)

 Now our formula is ci = (pi + ki) % 26

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

 How many different keys can we have of size n? 26n

 This is a great improvement over Caesar because the key space is much larger, so it would take

an adversary a much longer time to try all possibilities.

 But we still have two problems:

o The longer the key, the better Caesar is. But longer keys are harder to remember.

o If Alice sends a message to Bob, both Alice and Bob must know the key. (We call this

symmetric key encryption.) But how can Alice secretly communicate the key to Bob?

 For this reason, we like to use asymmetric keys in the real world.

 In this method, everybody knows Bob’s public key and can use it to encrypt a message to him.

But only Bob knows the private key which will allow him to decrypt messages he receives.

 Any adversary who intercepts the message cannot decrypt the message because she does not

have the private key.

 Here is one encryption scheme called RSA:

Public key: (e,n)

Private key: (d,n)

To encrypt: C = Me mod n

To decrypt: M = Cd mod n

 In order to calculate the public and private keys so that this relationship exists, we must execute

the following:

1. Choose 2 large primes p and q

2. Compute n= p*q

3. Choose e that is coprime to (p-1)(q-1)

4. Compute d such that (e*d) mod (p-1)(q-1) = 1

 How is this possible? We will not prove it here, so you will just have to believe us.

 If you are unwilling to blindly accept this as fact, you should consider taking cs220 with

Professor Rabin, who has invented a couple of pretty sweet encryption schemes himself

