CS 50: Introduction to Computer Science | Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

Dealing with a Seg Fault (0:00-8:00)

e Take another look at buggy6.c

e Because we index up to 10 in a 3-slot array, we get a whole bunch of “junk” in addition to the
three desired scores

e |f we push the limits of the program and index up to 1000, we get the message Segmentation
Fault (core dumped)

e This just means you screwed up. When something really bad happens, usually involving
memory, the operating system puts a file in the directory that has the contents of the ram.
Presumably you can go look at your core and figure out what happened.

e By listing the files in the current directory, we take a look at core and notice that it’s 300K.

e If the core is of no value to you, you probably should rm it because it’s so big.

Strings as Arrays (8:00-17:00)

e Whatis anarray? A collection of variables of an identical type.

e Interms of memory, an array is a contiguous chunk of RAM that contains an indexed list of
variables.

e Actually you’ve been seeing character arrays for quite some time. A string is really just a
character array.
e Take alook at stringl.c:

#include <cs50.h>
#include <stdio.h>
#include <string.h>

int
main (int argc, char * argvl[])
{

char c;

int i;

string s;

/* get line of text */
s = GetString();

/* print string, one character per line */
if (s != NULL)
{
for (i = 0; i < strlen(s); 1i++)
{
c = s[il];
printf ("$c\n", c);

CS 50: Introduction to Computer Science | Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

e First, note that we check to see if sis NULL. NULL means 0, and in this case is an error code that
is returned by GetString() if some problem occurred in the function.

e When you get a return value from a function, it is good practice to check and see if you got an
error code and then deal with it appropriately. Otherwise, you could accidentally refer to a
memory location that does not contain anything (or at least nothing valuable to us).

e Now look at the loop in the body of the program. Here, we loop through the string to access
each character.

e We can do this because strings are actually just arrays of characters. So when you type foo in as
an input string, the computer actually makes a character array consisting of |f|o|o]|\O

e The last character must always be \0 to indicate the end of the string. Strings are by convention
always “null-terminated”.

e Inthe same way we can use syntax like A[i] to index into an array, we can say s[i] for some string
s to index into it.

e Example. s =“foo”. s[0] =f.

e The function strlen() will tell you how many characters in the string. Probably implemented as a
while loop with an incrementing variable.

e When we have a for loop, the condition is executed every single time. When we have a function
in the condition, it gets run every time.

e This is inefficient and actually unnecessary since strlen(s) does not change in the body of the
loop

e We can rewrite this for loop as for (i = 0, n = strlen(s); i < n; i++)

e Of course, if we had a function whose value was changing, then we would want to call the
function every time at the start of the function

Capitalize.c (17:00-24:00)

o Take alook at capitalize.c

#include <cs50.h>
#include <stdio.h>
#include <string.h>

int
main (int argc, char * argvl[])
{

int i, n;

string s;

/* get line of text */
s = GetString();

/* capitalize text */
for (i = 0, n = strlen(s); i < n; i++)
{

if (s[i] >= 'a' && s[i] <= 'z")

CS 50: Introduction to Computer Science | Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

printf ("%c", s[i] - ('a' - 'A"));
else
printf ("%c", s[i]);
}
printf ("\n");

e This time, we have gotten rid of the NULL check. Why? Because strlen() already knows how to
detect if a string is of 0 length.

e What does this program do? It takes a string and reprints it in all caps. This works because of
the math related to characters. (See Monday’s scribe notes.)

® You might be wondering how we knew about the library string.h and the function strlen(). You
can find out about useful library functions and things on documentation websites. A good one is
cppreference.com. Some others are found on the website.

Command-Line Arguments (24:00-30:00)

e Whenever we write our main function we always give it some parameters like this:
int main(int argc, char * argv[])

e Mainis actually just a function that takes two arguments

o When we type the program’s name at the prompt, we can follow it by words or numbers that
will get passed into the program by means of these arguments

e Argcis anint representing the number of arguments

e Argvis an array of arrays of characters (an array of strings) that contains those arguments

o Note that the computer will throw away white space and treat anything separated by space as a
separate argument

e Take alookatargvl.c
int
main (int argc, char * argvl[])

{

int i;

/* print arguments */

printf ("\n");

for (1 = 0; i < argc; i++)
printf ("$s\n", argv[i]);

printf ("\n");

e This program iterates over the array of arguments and simply prints each one by referencing
argv[i]

e Notice that argv[0] is a.out — the name of the program

e So the first actual argument will always be argv[1], and will go up to argc many arguments

e Take alookatargv2.c

CS 50: Introduction to Computer Science | Scribe Notes

Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan
int

main (int argc, char * argv[])
{

int i, Jj, n;

/* print arguments */
printf ("\n");

for (1 = 0; 1 < argc; i++)
{
for (j = 0, n = strlen(argv([i]); J < n; Jj++)
printf ("$c\n", argv([il[j]);

printf ("\n");

e Now we again iterate over each argument from the command-line.

But now for each argument, we iterate over its characters.

We reference arrays within arrays using [][] notation

argvli][j] refers to the jth character of the ith array (remember, argv is an array of arrays)
CS 50’s Library (30:00-35:00)

e These functions are not written as robustly as they could be
e Forinstance, GetString() allocates memory for a string, but you never free it.
e We will learn more about allocating and freeing memory later on

Introduction to Cryptography (35:00-53:00)

o When we evaluate the security of cryptographic schemes, we consider the point of view of an
adversary trying to break them, and translate the process of breaking the code into a math
problem

e The more difficult the math problem, the better the encryption scheme

e The Caesar cipher we looked at on Monday is represented by the following equation:
ci=(pi+k) %26

e Asyou can see, it is an easily solvable problem because, with the help of a computer, we could
simply try all the possible rotations in a very small amount of time

e Asaresult, the Caesar cipher is an extremely unsecure encryption method

e Vigenere cipher is similar but uses larger keys. Rather than rotating by a number, it rotates by a
“word”.

e You have a multi-letter key and rotate each letter in your plain text by a different letter in your
key. (And just repeat the key if it's not long enough)

e If p=HELLO,WORLD and k = FOOBAR., then we get c by doing H+F = M, E+0=S, L+0 = Z, etc., to
come up with c = MSZMO,NTFZE

e (Note that we do not bother rotating punctuation)

e Now our formulais ¢; = (p; + ki) % 26

CS 50: Introduction to Computer Science | Scribe Notes
Harvard College Week 2 Friday
Fall 2007 Anjuli Kannan

e How many different keys can we have of size n? 26"
e Thisis a great improvement over Caesar because the key space is much larger, so it would take
an adversary a much longer time to try all possibilities.
e But we still have two problems:
o The longer the key, the better Caesar is. But longer keys are harder to remember.
o If Alice sends a message to Bob, both Alice and Bob must know the key. (We call this
symmetric key encryption.) But how can Alice secretly communicate the key to Bob?
e For this reason, we like to use asymmetric keys in the real world.
e In this method, everybody knows Bob’s public key and can use it to encrypt a message to him.
But only Bob knows the private key which will allow him to decrypt messages he receives.
e Any adversary who intercepts the message cannot decrypt the message because she does not
have the private key.
e Here is one encryption scheme called RSA:
Public key: (e,n)
Private key: (d,n)
To encrypt: C=M®mod n
To decrypt: M = C* mod n
e Inorder to calculate the public and private keys so that this relationship exists, we must execute
the following:
1. Choose 2 large primes p and q
2. Compute n=p*q
3. Choose e that is coprime to (p-1)(g-1)
4. Compute d such that (e*d) mod (p-1)(g-1) =1
e How is this possible? We will not prove it here, so you will just have to believe us.
e If you are unwilling to blindly accept this as fact, you should consider taking cs220 with
Professor Rabin, who has invented a couple of pretty sweet encryption schemes himself

