
CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Monday
Fall 2007 Anjuli Kannan

Introduction to Cryptography (5:00-9:00)

 Here is an encrypted message: Or fher gb qevax Ibhe binygvar!

 It has been encoded using a cipher. A cipher is an algorithm that takes some input text (plaing

text) and produces output text (cipher text). Its purpose is to hide the message.

 This message has been encoded by rotating every letter 13 places (AN, BO, etc.)

 What does it say? Be sure to drink your ovaltine.

 This is just like using one of those decoder rings that children use to send secret messages to

their friends. (In other words, it’s not a very good way to conceal data.)

From C to Other Languages (9:00-13:00)

 Many of the things we learn in C are concepts that can be carried over to other languages.

 For instance, if we wanted to write good old “hello, world” in C++, it would look like this:

#include <iostream>

using namespace std;

int

main(int argc, char * argv[])

{

cout << “hello, world!\n” << endl;

}

 Check your sourcecode handout for the same program written in Java, Perl, and other languages

 After a course like this, you’ll be able to do a lot of programming, but you’ll have to teach
yourself some languages.

Bugs (13:00-17:00)

 According to legend, Grace Hopper discovered the first “bug” in a program when she pulled a
dead moth out of a computer.

 Today, we use the term “bug” to refer to any sort of problem that causes our programs to run in
a way other than intended

 Take a look at buggy1.c. This program is supposed to print 10 asterisks. What is the problem?

int

main(int argc, char * argv[])

{

 int i;

 for (i = 0; i <= 10; i++)

 printf("*");

}

 It prints 11 asterisks because i runs from 0 to 10, which is 11 integers. Conventionally, we would
change this to for(i=0; i<10; i++)

 Take a look at buggy2.c. This program is supposed to print 10 asterisks all on the same line.

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Monday
Fall 2007 Anjuli Kannan

int

main(int argc, char * argv[])

{

 int i;

 for (i = 0; i <= 10; i++)

 printf("*");

 printf("\n");

}

 Instead, we get all the asterisks on the same line. Why?

 We are missing curly braces. If you want to associate multiple statements with a for loop, you
have to put them inside curly braces. Only if there is a single line can you omit them.

Integer and Character Casting (17:00-27:30)

 We know that chars are associated with ints and vice versa. By means of ASCII, the computer
has an integer corresponding to every character on the keyboard.

 What if we want to know which integer is associated with a particular integer?

 We can use a cast.

 Last week, we used a cast to make an int into a float to force floating point division.

 Again, we will use casting to change a type, but this time between the types int and char.

 So we can say
int i = (int) „A‟;

char c = (char) 65;

 Let’s take a look at ascii1.c

int

main(int argc, char * argv[])

{

 int i;

 /* display mapping for uppercase letters */

 for (i = 65; i < 65 + 26; i++)

 printf("%c: %d\n", (char) i, i);

 /* separate uppercase from lowercase */

 printf("\n");

 /* display mapping for lowercase letters */

 for (i = 97; i < 97 + 26; i++)

 printf("%c: %d\n", (char) i, i);

}

 In this program, we iterate from 65 up to 91 and for each number , print out the associated
character, (char) i, followed by the integer itself, i. This prints out a list of the capital letters with
their associated numbers (A:65, B: 66, …, Z:90). Then we do the same from 97 to 122, which is
the lowercase letters.

 Now let’s take a look at ascii2.c.

int

main(int argc, char * argv[])

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Monday
Fall 2007 Anjuli Kannan

{

 int i;

 /* display mapping for uppercase letters */

 for (i = 65; i < 65 + 26; i++)

 printf("%c %d %3d %c\n", (char) i, i, i + 32,

(char) (i + 32));

}

 This time, we make use of the fact that the integer corresponding to any given lowercase letter
is exactly 32 more than the integer corresponding to the same letter in uppercase. Therefore,
we needn’t cycle through 97-122 separately. When we want the uppercase letter, we just add
32 to the letter representing the uppercase letter.

 We also make use of the width aspect of format strings. We know that some numbers will be 2
digits and some 3. To make things line up perfectly, we tell each number to take up three
places.

 In ascii3.c, we iterate over the letters themselves.

int

main(int argc, char * argv[])

{

 char c;

 /* display mapping for uppercase letters */

 for (c = 'A'; c <= 'Z'; c = (char) ((int) c + 1))

 printf("%c: %d\n", c, (int) c);

}

 We initialize char c to A. In the update, we cast c to an int, add 1, and then cast it back to a char.
We repeat until c is Z.

 Actually, we don’t always need to be this explicit with casting because the compiler can
sometimes figure it out without us telling it to (implicitly). For instance, if we simply added 1 to
char c, it would know that we meant to add 1 to the int value and put the result back in c.

 Suppose we watned to implement the game Battleship. The following code, battleship.c, prints
out the gameboard:

int

main(int argc, char * argv[])

{

 int i, j;

 /* print top row of numbers */

 printf("\n ");

 for (i = 1; i <= 10; i++)

 printf("%d ", i);

 printf("\n");

 /* print rows of holes, with letters in leftmost column */

 for (i = 0; i < 10; i++)

 {

 printf("%c ", 'A' + i);

 for (j = 1; j <= 10; j++)

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Monday
Fall 2007 Anjuli Kannan

 printf("o ");

 printf("\n");

 }

 printf("\n");

}

 The first for loop prints the numbers from 1 to 10 across the top of the screen

 The second for loop prints 10 separate lines (we know because it ends with printf(“\n”). On
each line, we print a char that is i letters past A (where i goes from 0 to 9) followed by 10 o’s.

Functions (27:30-40:00)

 Think about the song “99 Botles of Beer on the Wall.”

 If we wanted to print out the lyrics to this song, we would make use of a loop.

 Examine the following code, beer1.c:

int

main(int argc, char * argv[])

{

 int i, n;

 /* ask user for number */

 printf("How many bottles will there be? ");

 n = GetInt();

 /* exit upon invalid input */

 if (n < 1)

 {

 printf("Sorry, that makes no sense.\n");

 return 1;

 }

 /* sing the annoying song */

 printf("\n");

 for (i = n; i > 0; i--)

 {

 printf("%d bottle(s) of beer on the wall,\n", i);

 printf("%d bottle(s) of beer,\n", i);

 printf("Take one down, pass it around,\n");

 printf("%d bottle(s) of beer on the wall.\n\n", i - 1);

 }

 /* exit when song is over */

 printf("Wow, that's annoying.\n");

 return 0;

}

 First, we get input from the user and, if given a negative number, print an error message and
return 1.

 Recall that main has a return value of int. If all goes well, it returns 0. If it exits with a problem it
returns 1. 1 is an error code that signals to someone running the program that the program
exited abnormally.

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Monday
Fall 2007 Anjuli Kannan

 Then we loop from n down to 0, decrementing i by one every time.

 We can improve this program using hierarchical decomposition. This just means breaking down
a large problem into smaller problems.

 For example, one major piece of this program is the part that prints out the chorus for a given
value of n. We can factor this out and put it into its own function. When we want to print the
chorus, we simply call the function.

 Look at beer4.c:

int

main(int argc, char * argv[])

{

 int n;

 /* ask user for number */

 printf("How many bottles will there be? ");

 n = GetInt();

 /* exit upon invalid input */

 if (n < 1)

 {

 printf("Sorry, that makes no sense.\n");

 return 1;

 }

 /* sing the annoying song */

 printf("\n");

 while (n)

 chorus(n--);

 /* exit when song is over */

 printf("Wow, that's annoying.\n");

 return 0;

}

 Now, we just call the function chorus() repeatedly as long as n is nonzero.

 In the line while (n) we make use of the fact that, when considered as a Boolean, 0 is false, and
everything else is true. This statement will be false only when 0 is reached.

 Notice also that we decrement n within the call to chorus itself. This tells the computer to
perform chorus with the current value of n, then reduce it by one.

 This is the same as:

while(n)

{

chorus(n);

n = n-1;

}

 Now look at the function void chorus (int b)

void

chorus(int b)

CS 50: Introduction to Computer Science I Scribe Notes
Harvard College Week 2 Monday
Fall 2007 Anjuli Kannan

{

 string s1, s2;

 /* use proper grammar */

 s1 = (b == 1) ? "bottle" : "bottles";

 s2 = (b == 2) ? "bottle" : "bottles";

 /* sing verses */

 printf("%d %s of beer on the wall,\n", b, s1);

 printf("%d %s of beer,\n", b, s1);

 printf("Take one down, pass it around,\n");

 printf("%d %s of beer on the wall.\n\n", b - 1, s2);

}

 This is a void function because it does not return anything. That is, it produces no output that
can be assigned to a variable. It only has “side effects” (printing text to the screen)

 Within the function, we now refer to the number of bottles as b. We don’t call it n because we
might call this function in many different contexts with many different variables.

 The function simply makes a local copy of whatever number it is passed and calls it b.
Throughout the function, it refers only to b when it wants to deal with the number of bottles.

 In this function we have also fixed the bottle/bottles grammar issue in this line:

s1 = (b == 1) ? "bottle" : "bottles";

 This line is the combination of an if statement and a variable assignment. It takes the if
statement “If b=1, bottle. Else, bottles” and assigns the result to s1.

 Notice that we need two strings, s1 and s2, because the first three lines of the chorus refer to b
bottles while the last one refers to b-1 bottles.

